ﻻ يوجد ملخص باللغة العربية
In data processing and machine learning, an important challenge is to recover and exploit models that can represent accurately the data. We consider the problem of recovering Gaussian mixture models from datasets. We investigate symmetric tensor decomposition methods for tackling this problem, where the tensor is built from empirical moments of the data distribution. We consider identifiable tensors, which have a unique decomposition, showing that moment tensors built from spherical Gaussian mixtures have this property. We prove that symmetric tensors with interpolation degree strictly less than half their order are identifiable and we present an algorithm, based on simple linear algebra operations, to compute their decomposition. Illustrative experimentations show the impact of the tensor decomposition method for recovering Gaussian mixtures, in comparison with other state-of-the-art approaches.
We analyze the decomposition problem of multivariate polynomial-exponential functions from truncated series and present new algorithms to compute their decomposition. Using the duality between polynomials and formal power series, we first show how th
We propose a method (TT-GP) for approximate inference in Gaussian Process (GP) models. We build on previous scalable GP research including stochastic variational inference based on inducing inputs, kernel interpolation, and structure exploiting algeb
We consider the problem of decomposing higher-order moment tensors, i.e., the sum of symmetric outer products of data vectors. Such a decomposition can be used to estimate the means in a Gaussian mixture model and for other applications in machine le
Machine learning techniques allow a direct mapping of atomic positions and nuclear charges to the potential energy surface with almost ab-initio accuracy and the computational efficiency of empirical potentials. In this work we propose a machine lear
The tensor decomposition addressed in this paper may be seen as a generalisation of Singular Value Decomposition of matrices. We consider general multilinear and multihomogeneous tensors. We show how to reduce the problem to a truncated moment matrix