ترغب بنشر مسار تعليمي؟ اضغط هنا

Who Ordered That? Unequal-Mass Binary Black Hole Mergers Have Larger Effective Spins

88   0   0.0 ( 0 )
 نشر من قبل Thomas Callister
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hierarchical analysis of the binary black hole (BBH) detections by the Advanced LIGO and Virgo detectors has offered an increasingly clear picture of their mass, spin, and redshift distributions. Fully understanding the formation and evolution of BBH mergers will require not just the characterization of these marginal distributions, though, but the discovery of any correlations that exist between the properties of BBHs. Here, we hierarchically analyze the ensemble of BBHs discovered by the LIGO and Virgo with a model that allows for intrinsic correlations between their mass ratios $q$ and effective inspiral spins $chi_mathrm{eff}$. At $98.7%$ credibility, we find that the mean of the $chi_mathrm{eff}$ distribution varies as a function of $q$, such that more unequal-mass BBHs exhibit systematically larger $chi_mathrm{eff}$. We find Bayesian odds ratio of $10.5$ in favor of a model that allows for such a correlation over one that does not. Finally, we use simulated signals to verify that our results are robust against degeneracies in the measurements of $q$ and $chi_mathrm{eff}$ for individual events. While many proposed astrophysical formation channels predict some degree correlation between spins and mass ratio, these predicted correlations typically act in an opposite sense to the trend we observationally identify in the data.

قيم البحث

اقرأ أيضاً

87 - Yubo Su , Bin Liu , Dong Lai 2021
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o ctupole-order effects, also known as the eccentric Kozai mechanism, are important. This can be the case when the tertiary is of comparable mass to the binary components. Since the octupole strength [$propto (1-q)/(1+q)$] increases with decreasing binary mass ratio $q$, such ZLK-induced mergers favor binaries with smaller mass ratios. We use a combination of numerical and analytical approaches to fully characterize the octupole-enhanced binary BH mergers and provide analytical criteria for efficiently calculating the strength of this enhancement. We show that for hierarchical triples with semi-major axis ratio $a/a_{rm out}gtrsim 0.01$-$0.02$, the binary merger fraction can increase by a large factor (up to $sim 20$) as $q$ decreases from unity to $0.2$. The resulting mass ratio distribution for merging binary BHs produced in this scenario is in tension with the observed distribution obtained by the LIGO/VIRGO collaboration, although significant uncertainties remain about the initial distribution of binary BH masses and mass ratios.
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angu lar momentum from the compact binary, such that the black holes finally merge. In the process, the spin of the dominant black hole is reoriented. On observational level, the spins are directly related to the jets, which can be seen at radio frequencies. Images of the X-shaped radio galaxies together with evidence on the age of the jets illustrate that the jets are reoriented, a phenomenon known as spin-flip. Based on the galaxy luminosity statistics we argue here that the typical galaxy encounters involve mass ratios between 1:3 to 1:30 for the central black holes. Based on the spin-orbit precession and gravitational radiation we also argue that for this typical mass ratio in the inspiral phase of the merger the initially dominant orbital angular momentum will become smaller than the spin, which will be reoriented. We prove here that the spin-flip phenomenon typically occurs already in the inspiral phase, and as such is describable by post-Newtonian techniques.
112 - J. M. Fedrow 2017
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste llar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a $30 + 30 M_odot$ BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities $rho gtrsim 10^6 - 10^7 , mathrm{g , cm}^{-3}$ dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations conclusively rule out BBH coalescence inside stellar gas of $rho gtrsim 10^7 , mathrm{g,cm}^{-3}$. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported from the O1/O2 runs have near zero effective spins. There are only three potential explanations of this fact. If the BH spin magnitudes are large then (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Or, (iii) the BH spin magnitudes are small. We test the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, include revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can match simultaneously the observed BH-BH merger rate density, BH masses, and effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be a key in better reproducing the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely overestimated if the merger GW170729 hosts a BH more massive than 50 Msun. We also estimate rate of BH-NS mergers from recent LIGO/Virgo observations. Our updated models of BH-BH, BH-NS and NS-NS mergers are now publicly available at www.syntheticuniverse.org.
We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gra vitational waves (GWs) can lead to captures and subsequent inspirals with appreciable eccentricities when entering the sensitive frequency ranges of the LIGO and Virgo GW detectors. In this study, we perform binary-binary and binary-single scattering experiments with general relativistic dynamics up through the 2.5 post-Newtonian order included, both in a controlled setting to gauge the importance of non-dissipative post-Newtonian terms and derive scaling relations for the cross-section of GW captures, as well as experiments tuned to the strong interactions from state-of-the art globular cluster models to assess the relative importance of the binary-binary channel at facilitating GW captures and the resultant eccentricity distributions of inspiral from channel. Although binary-binary interactions are 10-100 times less frequent in globular clusters than binary-single interactions, their longer lifetime and more complex dynamics leads to a higher probability for GW captures to occur during the encounter. We find that binary-binary interactions contribute 25-45% of the eccentric mergers which occur during strong black hole encounters in globular clusters, regardless of the properties of the cluster environment. The inclusion of higher multiplicity encounters in dense star clusters therefore have major implications on the predicted rates of highly eccentric binaries potentially detectable by the LIGO/Virgo network. As gravitational waveforms of eccentric inspirals are distinct from those generated by merging binaries which have circularized, measurements of eccentricity in such systems would highly constrain their formation scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا