ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant self-force effects in extreme-mass-ratio binaries: A scalar model

99   0   0.0 ( 0 )
 نشر من قبل Zachary Nasipak
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme-mass-ratio inspirals (EMRIs), compact binaries with small mass-ratios $epsilonll 1$, will be important sources for low-frequency gravitational wave detectors. Almost all EMRIs will evolve through important transient orbital $rtheta$-resonances, which will enhance or diminish their gravitational wave flux, thereby affecting the phase evolution of the waveforms at $O(epsilon^{1/2})$ relative to leading order. While modeling the local gravitational self-force (GSF) during resonances is essential for generating accurate EMRI waveforms, so far the full GSF has not been calculated for an $rtheta$-resonant orbit owing to computational demands of the problem. As a first step we employ a simpler model, calculating the scalar self-force (SSF) along $rtheta$-resonant geodesics in Kerr spacetime. We demonstrate two ways of calculating the $rtheta$-resonant SSF (and likely GSF), with one method leaving the radial and polar motions initially independent as if the geodesic is non-resonant. We illustrate results by calculating the SSF along geodesics defined by three $rtheta$-resonant ratios (1:3, 1:2, 2:3). We show how the SSF and averaged evolution of the orbital constants vary with the initial phase at which an EMRI enters resonance. We then use our SSF data to test a previously-proposed integrability conjecture, which argues that conservative effects vanish at adiabatic order during resonances. We find prominent contributions from the conservative SSF to the secular evolution of the Carter constant, $langle dot{mathcal{Q}}rangle$, but these non-vanishing contributions are on the order of, or less than, the estimated uncertainties of our self-force results. The uncertainties come from residual, incomplete removal of the singular field in the regularization process. Higher order regularization parameters, once available, will allow definitive tests of the integrability conjecture.



قيم البحث

اقرأ أيضاً

We present the gravitational-wave flux balance law in an extreme mass-ratio binary with a spinning secondary. This law relates the flux of energy (angular momentum) radiated to null infinity and through the event horizon to the local change in the se condarys orbital energy (angular momentum) for generic (non-resonant) bound orbits in Kerr spacetime. As an explicit example we compute these quantities for a spin-aligned body moving on a circular orbit around a Schwarzschild black hole. We perform this calculation both analytically, via a high-order post-Newtonian expansion, and numerically in two different gauges. Using these results we demonstrate explicitly that our new balance law holds.
Intermediate/Extreme mass ratio inspiral (IMRI/EMRI) system provides a good tool to test the nature of gravity in strong field. We construct the self-force and use the self-force method to generate accurate waveform templates for IMRIS/EMRIs on quasi -elliptical orbits in Brans-Dicke theory. The extra monopole and dipole emissions in Brans-Dicke theory accelerate the orbital decay, so the observations of gravitational waves may place stronger constraint on Brans-Dicke theory. With a two-year observations of gravitational waves emitted from IMRIs/EMRIs with LISA, we can get the most stringent constraint on the Brans-Dicke coupling parameter $omega_0>10^5$.
In the context of metric perturbation theory for non-spinning black holes, extreme mass ratio binary (EMRB) systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary va lue problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a burst of junk radiation which eventually propagates off the computational domain. We observe another unintended consequence of trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.
A powerful technique to calculate gravitational radiation from binary systems involves a perturbative expansion: if the masses of the two bodies are very different, the small body is treated as a point particle of mass $m_p$ moving in the gravitation al field generated by the large mass $M$, and one keeps only linear terms in the small mass ratio $m_p/M$. This technique usually yields finite answers, which are often in good agreement with fully nonlinear numerical relativity results, even when extrapolated to nearly comparable mass ratios. Here we study two situations in which the point-particle approximation yields a divergent result: the instantaneous flux emitted by a small body as it orbits the light ring of a black hole, and the total energy absorbed by the horizon when a small body plunges into a black hole. By integrating the Teukolsky (or Zerilli/Regge-Wheeler) equations in the frequency and time domains we show that both of these quantities diverge. We find that these divergences are an artifact of the point-particle idealization, and are able to interpret and regularize this behavior by introducing a finite size for the point particle. These divergences do not play a role in black-hole imaging, e.g. by the Event Horizon Telescope.
It is not currently clear how important it will be to include conservative self-force (SF) corrections in the models for extreme-mass-ratio inspiral (EMRI) waveforms that will be used to detect such signals in LISA (Laser Interferometer Space Antenna ) data. These proceedings will address this issue for circular-equatorial inspirals using an approximate EMRI model that includes conservative corrections at leading post-Newtonian order. We will present estimates of the magnitude of the parameter estimation errors that would result from omitting conservative corrections, and compare these to the errors that will arise from noise fluctuations in the detector. We will also use this model to explore the relative importance of the second-order radiative piece of the SF, which is not presently known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا