ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quasipolynomial $(2+varepsilon)$-Approximation for Planar Sparsest Cut

68   0   0.0 ( 0 )
 نشر من قبل Anupam Gupta
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The (non-uniform) sparsest cut problem is the following graph-partitioning problem: given a supply graph, and demands on pairs of vertices, delete some subset of supply edges to minimize the ratio of the supply edges cut to the total demand of the pairs separated by this deletion. Despite much effort, there are only a handful of nontrivial classes of supply graphs for which constant-factor approximations are known. We consider the problem for planar graphs, and give a $(2+varepsilon)$-approximation algorithm that runs in quasipolynomial time. Our approach defines a new structural decomposition of an optimal solution using a patching primitive. We combine this decomposition with a Sherali-Adams-style linear programming relaxation of the problem, which we then round. This should be compared with the polynomial-time approximation algorithm of Rao (1999), which uses the metric linear programming relaxation and $ell_1$-embeddings, and achieves an $O(sqrt{log n})$-approximation in polynomial time.



قيم البحث

اقرأ أيضاً

Suppose that we are given an arbitrary graph $G=(V, E)$ and know that each edge in $E$ is going to be realized independently with some probability $p$. The goal in the stochastic matching problem is to pick a sparse subgraph $Q$ of $G$ such that the realized edges in $Q$, in expectation, include a matching that is approximately as large as the maximum matching among the realized edges of $G$. The maximum degree of $Q$ can depend on $p$, but not on the size of $G$. This problem has been subject to extensive studies over the years and the approximation factor has been improved from $0.5$ to $0.5001$ to $0.6568$ and eventually to $2/3$. In this work, we analyze a natural sampling-based algorithm and show that it can obtain all the way up to $(1-epsilon)$ approximation, for any constant $epsilon > 0$. A key and of possible independent interest component of our analysis is an algorithm that constructs a matching on a stochastic graph, which among some other important properties, guarantees that each vertex is matched independently from the vertices that are sufficiently far. This allows us to bypass a previously known barrier towards achieving $(1-epsilon)$ approximation based on existence of dense Ruzsa-Szemeredi graphs.
Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for $ k $ disjoint subsets of vertices (clusters) whose all edge expansions are small and furthermore, the number of vertices remained in the exterior of the subsets (outliers) is also small. We prove that although this problem is $ NP-$hard for trees, it can be solved in polynomial time for all weighted trees, provided that we restrict the search space to subsets which induce connected subgraphs. The proposed algorithm is based on dynamic programming and runs in the worst case in $ O(k^2 n^3) $, when $ n $ is the number of vertices and $ k $ is the number of clusters. It also runs in linear time when the number of clusters and the number of outliers is bounded by a constant.
We study the classical Node-Disjoint Paths (NDP) problem: given an $n$-vertex graph $G$ and a collection $M={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of vertices of $G$ called demand pairs, find a maximum-cardinality set of node-disjoint paths connecting the demand pairs. NDP is one of the most basic routing problems, that has been studied extensively. Despite this, there are still wide gaps in our understanding of its approximability: the best currently known upper bound of $O(sqrt n)$ on its approximation ratio is achieved via a simple greedy algorithm, while the best current negative result shows that the problem does not have a better than $Omega(log^{1/2-delta}n)$-approximation for any constant $delta$, under standard complexity assumptions. Even for planar graphs no better approximation algorithms are known, and to the best of our knowledge, the best negative bound is APX-hardness. Perhaps the biggest obstacle to obtaining better approximation algorithms for NDP is that most currently known approximation algorithms for this type of problems rely on the standard multicommodity flow relaxation, whose integrality gap is $Omega(sqrt n)$ for NDP, even in planar graphs. In this paper, we break the barrier of $O(sqrt n)$ on the approximability of the NDP problem in planar graphs and obtain an $tilde O(n^{9/19})$-approximation. We introduce a new linear programming relaxation of the problem, and a number of new techniques, that we hope will be helpful in designing more powerful algorithms for this and related problems.
128 - Daniel Kane , Raghu Meka 2012
We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. P RGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of Omega(log log n).
We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88 + epsilon$)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا