ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Efficient Precoding in Electromagnetic Exposure-Constrained Uplink Multiuser MIMO

205   0   0.0 ( 0 )
 نشر من قبل Li You
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

User electromagnetic (EM) exposure is continuously being exacerbated by the evolution of multi-antenna portable devices. To mitigate the effects of EM radiation, portable devices must satisfy tight regulations on user exposure level, generally measured by specific absorption rate (SAR). To this end, we investigate the SAR-aware uplink precoder design for the energy efficiency (EE) maximization in multiuser multiple-input multiple-output transmission exploiting statistical channel state information (CSI). As the objective function of the design problem is computationally demanding in the absence of closed form, we present an asymptotic approximation of the objective to facilitate the precoder design. An iterative algorithm based on Dinkelbachs method and sequential optimization is proposed to obtain an optimal solution of the asymptotic EE optimization problem. Based on the transformed problem, an iterative SAR-aware water-filing scheme is further conceived for the EE optimization precoding design with statistical CSI. Numerical results illustrate substantial performance improvements provided by our proposed SAR-aware energy-efficient transmission scheme over the traditional baseline schemes.

قيم البحث

اقرأ أيضاً

Future wireless communications are largely inclined to deploy a massive number of antennas at the base stations (BS) by exploiting energy-efficient and environmentally friendly technologies. An emerging technology called dynamic metasurface antennas (DMAs) is promising to realize such massive antenna arrays with reduced physical size, hardware cost, and power consumption. This paper aims to optimize the energy efficiency (EE) performance of DMAs-assisted massive MIMO uplink communications. We propose an algorithmic framework for designing the transmit precoding of each multi-antenna user and the DMAs tuning strategy at the BS to maximize the EE performance, considering the availability of the instantaneous and statistical channel state information (CSI), respectively. Specifically, the proposed framework includes Dinkelbachs transform, alternating optimization, and deterministic equivalent methods. In addition, we obtain a closed-form solution to the optimal transmit signal directions for the statistical CSI case, which simplifies the corresponding transmission design. The numerical results show good convergence performance of our proposed algorithms as well as considerable EE performance gains of the DMAs-assisted massive MIMO uplink communications over the baseline schemes.
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
Hybrid analog-digital (A/D) transceivers designed for millimeter wave (mmWave) systems have received substantial research attention, as a benefit of their lower cost and modest energy consumption compared to their fully-digital counterparts. We furth er improve their performance by conceiving a Tomlinson-Harashima precoding (THP) based nonlinear joint design for the downlink of multiuser multiple-input multiple-output (MIMO) mmWave systems. Our optimization criterion is that of minimizing the mean square error (MSE) of the system under channel uncertainties subject both to realistic transmit power constraint and to the unit modulus constraint imposed on the elements of the analog beamforming (BF) matrices governing the BF operation in the radio frequency domain. We transform this optimization problem into a more tractable form and develop an efficient block coordinate descent (BCD) based algorithm for solving it. Then, a novel two-timescale nonlinear joint hybrid transceiver design algorithm is developed, which can be viewed as an extension of the BCD-based joint design algorithm for reducing both the channel state information (CSI) signalling overhead and the effects of outdated CSI. Moreover, we determine the near-optimal cancellation order for the THP structure based on the lower bound of the MSE. The proposed algorithms can be guaranteed to converge to a Karush-Kuhn-Tucker (KKT) solution of the original problem. The simulation results demonstrate that our proposed nonlinear joint hybrid transceiver design algorithms significantly outperform the existing linear hybrid transceiver algorithms and approach the performance of the fully-digital transceiver, despite its lower cost and power dissipation.
In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploi ting both instantaneous and statistical CSI, we aim to design precoding vectors to maximize the ergodic rate (e.g., sum rate, minimum rate and etc.) subject to a total transmit power constraint. To maximize an upper bound of the ergodic rate, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. As such, the high-dimensional precoder design problem turns into a low-dimensional power control problem. The Lagrange multipliers play a crucial role in determining both precoder directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a general framework underpinned by a properly designed neural network that learns directly from CSI. To further relieve the computational burden, we obtain a low-complexity framework by decomposing the original problem into computationally efficient subproblems with instantaneous and statistical CSI handled separately. With the off-line pretrained neural network, the online computational complexity of precoding is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.
In this paper, we address the symbol level precoding (SLP) design problem under max-min SINR criterion in the downlink of multiuser multiple-input single-output (MISO) channels. First, we show that the distance preserving constructive interference re gions (DPCIR) are always polyhedral angles (shifted pointed cones) for any given constellation point with unbounded decision region. Then we prove that any signal in a given unbounded DPCIR has a norm larger than the norm of the corresponding vertex if and only if the convex hull of the constellation contains the origin. Using these properties, we show that the power of the noiseless received signal lying on an unbounded DPCIR is an strictly increasing function of two parameters. This allows us to reformulate the originally non-convex SLP max-min SINR as a convex optimization problem. We discuss the loss due to our proposed convex reformulation and provide some simulation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا