ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Mobile Phone Data for Migration Flows

161   0   0.0 ( 0 )
 نشر من قبل Massimiliano Luca
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Statistics on migration flows are often derived from census data, which suffer from intrinsic limitations, including costs and infrequent sampling. When censuses are used, there is typically a time gap - up to a few years - between the data collection process and the computation and publication of relevant statistics. This gap is a significant drawback for the analysis of a phenomenon that is continuously and rapidly changing. Alternative data sources, such as surveys and field observations, also suffer from reliability, costs, and scale limitations. The ubiquity of mobile phones enables an accurate and efficient collection of up-to-date data related to migration. Indeed, passively collected data by the mobile network infrastructure via aggregated, pseudonymized Call Detail Records (CDRs) is of great value to understand human migrations. Through the analysis of mobile phone data, we can shed light on the mobility patterns of migrants, detect spontaneous settlements and understand the daily habits, levels of integration, and human connections of such vulnerable social groups. This Chapter discusses the importance of leveraging mobile phone data as an alternative data source to gather precious and previously unavailable insights on various aspects of migration. Also, we highlight pending challenges that would need to be addressed before we can effectively benefit from the availability of mobile phone data to help make better decisions that would ultimately improve millions of peoples lives.



قيم البحث

اقرأ أيضاً

This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing . It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.
104 - Daniel Tang 2020
Many countries are currently gearing up to use smart-phone apps to perform contact tracing as part of the effort to manage the COVID-19 pandemic and prevent resurgences of the disease after the initial outbreak. With the announcement of the Apple/Goo gle partnership to introduce contact-tracing functionality to iOS and Android, it seems likely that this will be adopted in many countries. An important part of the functionality of the app will be to decide whether a person should be advised to self-isolate, be tested or end isolation. However, the privacy preserving nature of the Apple/Google contact tracing algorithm means that centralised curation of these decisions is not possible so each phone must use its own risk model to inform decisions. Ideally, the risk model should use Bayesian inference to decide the best course of action given the test results of the user and those of other users. Here we present a decentralised algorithm that estimates the Bayesian posterior probability of viral transmission events and evaluates when a user should be notified, tested or released from isolation while preserving user privacy. The algorithm also allows the disease models on the phones to learn from everyones contact-tracing data and will allow Epidemiologists to better understand the dynamics of the disease. The algorithm is a message passing algorithm, based on belief propagation, so each smart-phone can be used to execute a small part of the algorithm without releasing any sensitive information. In this way, the network of all participating smart-phones forms a distributed computation device that performs Bayesian inference, informs each user when they should start/end isolation or be tested and learns about the disease from users data.
The newly released Orange D4D mobile phone data base provides new insights into the use of mobile technology in a developing country. Here we perform a series of spatial data analyses that reveal important geographic aspects of mobile phone use in Co te dIvoire. We first map the locations of base stations with respect to the population distribution and the number and duration of calls at each base station. On this basis, we estimate the energy consumed by the mobile phone network. Finally, we perform an analysis of inter-city mobility, and identify high-traffic roads in the country.
Today, 95% of the global population has 2G mobile phone coverage and the number of individuals who own a mobile phone is at an all time high. Mobile phones generate rich data on billions of people across different societal contexts and have in the la st decade helped redefine how we do research and build tools to understand society. As such, mobile phone data has the potential to revolutionize how we tackle humanitarian problems, such as the many suffered by refugees all over the world. While promising, mobile phone data and the new computational approaches bring both opportunities and challenges. Mobile phone traces contain detailed information regarding peoples whereabouts, social life, and even financial standing. Therefore, developing and adopting strategies that open data up to the wider humanitarian and international development community for analysis and research while simultaneously protecting the privacy of individuals is of paramount importance. Here we outline the challenging situation of children on the move and actions UNICEF is pushing in helping displaced children and youth globally, and discuss opportunities where mobile phone data can be used. We identify three key challenges: data access, data and algorithmic bias, and operationalization of research, which need to be addressed if mobile phone data is to be successfully applied in humanitarian contexts.
Clinical trials are crucial for drug development but are time consuming, expensive, and often burdensome on patients. More importantly, clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment. If we were better at predicting the results of clinical trials, we could avoid having to run trials that will inevitably fail more resources could be devoted to trials that are likely to succeed. In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions for all diseases based on a comprehensive and diverse set of web data including molecule information of the drugs, target disease information, trial protocol and biomedical knowledge. HINT first encode these multi-modal data into latent embeddings, where an imputation module is designed to handle missing data. Next, these embeddings will be fed into the knowledge embedding module to generate knowledge embeddings that are pretrained using external knowledge on pharmaco-kinetic properties and trial risk from the web. Then the interaction graph module will connect all the embedding via domain knowledge to fully capture various trial components and their complex relations as well as their influences on trial outcomes. Finally, HINT learns a dynamic attentive graph neural network to predict trial outcome. Comprehensive experimental results show that HINT achieves strong predictive performance, obtaining 0.772, 0.607, 0.623, 0.703 on PR-AUC for Phase I, II, III, and indication outcome prediction, respectively. It also consistently outperforms the best baseline method by up to 12.4% on PR-AUC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا