ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vertical Position of Sr Dopants in the Sr$_x$Bi$_2$Se$_3$ Superconductor

124   0   0.0 ( 0 )
 نشر من قبل Christian Kumpf
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of topological superconductivity in doped Bi$_2$Se$_3$ made this class of materials highly important for the field of condensed matter physics. However, the structural origin of the superconducting state remained elusive, despite being investigated intensively in recent years. We use scanning tunneling microscopy and the normal incidence x-ray standing wave (NIXSW) technique in order to determine the vertical position of the dopants -- one of the key parameters for understanding topological superconductivity in this material -- for the case of Sr$_{x}$Bi$_2$Se$_3$. In a novel approach we analyze the NIXSW data in consideration of the inelastic mean free path of the photoemitted electrons, which allows us to distinguish between symmetry equivalent sites. We find that Sr-atoms are not situated inside the van der Waals gap between the Bi$_2$Se$_3$ quintuple layers but rather in the quintuple layer close to the outer Se planes.



قيم البحث

اقرأ أيضاً

An archetypical layered topological insulator Bi$_2$Se$_3$ becomes superconductive upon doping with Sr, Nb or Cu. Superconducting properties of these materials in the presence of in-plane magnetic field demonstrate spontaneous symmetry breaking: 180$ ^circ$-rotation symmetry of superconductivity versus 120$^circ$-rotation symmetry of the crystal. Such behavior brilliantly confirms nematic topological superconductivity. To what extent this nematicity is due to superconducting pairing in these materials, rather than due to crystal structure distortions? This question remained unanswered, because so far no visible deviations from the 3-fold crystal symmetry were resolved in these materials. To address this question we grow high quality single crystals of Sr$_x$Bi$_2$Se$_3$, perform detailed X-ray diffraction and magnetotransport studies and reveal that the observed superconducting nematicity direction correlates with the direction of small structural distortions in these samples( $sim 0.02$% elongation in one crystallographic direction). Additional anisotropy comes from orientation of the crystallite axes. 2-fold symmetry of magnetoresistance observed in the most uniform crystals well above critical temperature demonstrates that these structural distortions are nevertheless strong enough. Our data in combination with strong sample-to-sample variation of the superconductive anisotropy parameter are indicative for significance of the structural factor in the apparent nematic superconductivity in Sr$_x$Bi$_2$Se$_3$.
Nematic states are characterized by rotational symmetry breaking without translational ordering. Recently, nematic superconductivity, in which the superconducting gap spontaneously lifts the rotational symmetry of the lattice, has been discovered. Ho wever the pairing mechanism and the mechanism determining the nematic orientation remain unresolved. A first step is to demonstrate control of the nematicity, through application of an external symmetry-breaking field, to determine the sign and strength of coupling to the lattice. Here, we report for the first time control of the nematic orientation of the superconductivity of Sr$_x$Bi$_2$Se$_3$, through externally-applied uniaxial stress. The suppression of subdomains indicates that it is the $Delta_{4y}$ state that is most favoured under compression along the basal Bi-Bi bonds. These results provide an inevitable step towards understanding the microscopic origin of the unique topological nematic superconductivity.
We present a novel experimental evidence for the odd-parity nematic superconductivity in high-quality single crystals of doped topological insulator Sr$_x$Bi$_2$Se$_3$. The X-ray diffraction shows that the grown single crystals are either weakly stre tched or compressed uniaxially in the basal plane along one of the crystal axis. We show that in the superconducting state, the upper critical magnetic field $H_{c2}$ has a two-fold rotational symmetry and depends on the sign of the strain: in the stretched samples, the maximum of $H_{c2}$ is achieved when the in-plane magnetic field is transverse to the strain axis, while in the compressed samples this maximum is observed when the field is along the strain direction. This result is naturally explained within a framework of the odd-parity nematic superconductivity coupled to the strain. Magnetoresistance in the normal state is independent of the current direction and also has a two-fold rotational symmetry that demonstrates the nematicity of the electronic system in the normal state.
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi$_2$Se$_3$. Topological superconductors are predicted to be unconventional, with mixed even and odd parity Cooper pairs states. An adequate probe to test for unconventional superconductivity is the upper critical field, $B_{c2}$. For a standard BCS layered superconductor $B_{c2}$ shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting Sr$_x$Bi$_2$Se$_3$ crystals ($T_c = 3.0$~K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of $B_{c2}$ when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of $B_{c2}$ indicates unconventional superconductivity with an odd-parity polarized triplet Cooper pair state ($Delta_4$-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
In the electronic nematic state, an electronic system has a lower symmetry than the crystal structure of the same system. Electronic nematic states have been observed in various unconventional superconductors such as cuprate- and iron-based, heavy-fe rmion, and topological superconductors. The relation between nematicity and superconductivity is a major unsolved problem in condensed matter physics. By angle-resolved specific heat measurements, we report bulk quasi-particle evidence of nematicity in the topological superconductor Sr$_x$Bi$_2$Se$_3$. The specific heat exhibited a clear 2-fold symmetry despite the 6-fold symmetric lattice. Most importantly, the 2-fold symmetry appeared in the normal state above the superconducting transition temperature. This is explained by the angle-dependent Zeeman effect due to the anisotropic density of states in the nematic phase. Such results highlight the interrelation between nematicity and unconventional superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا