ﻻ يوجد ملخص باللغة العربية
Shubnikov-de Haas oscillation measurements were performed on CaFeAsF up to a high temperature of $T$ = 7 K. The oscillation frequency of the $alpha$ Dirac electron cylinder exhibits a $T^2$ shift as the temperature is raised, while that of the $beta$ Schrodinger hole cylinder shows no clear shift. The observed shift is reasonably explained by the topological frequency shift proposed in [Guo, Alexandradinata, textit{et al.}, arXiv:1910.07608] which argues that the energy dependence of the effective mass peculiar to a linear band dispersion gives rise to a frequency shift proportional to $T^2$. The present result corroborate the applicability of the topological frequency shift to distinguish topologically nontrivial pockets from trivial ones.
The original proposal to achieve superconductivity by starting from a quantum spin-liquid (QSL) and doping it with charge carriers, as proposed by Anderson in 1987, has yet to be realized. Here we propose an alternative strategy: use a QSL as a subst
Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we complet
We report synthesis, structural details and electrical transport properties of topological insulator Bi2Te3. The single crystalline specimens of Bi2Te3 are obtained from high temperature (950C) melt and slow cooling (2C/hour). The resultant crystals
Exotic phenomenon can be achieved in quantum materials by confining electronic states into two dimensions. For example, relativistic fermions are realised in a single layer of carbon atoms, the quantized Hall effect can result from two-dimensional (2
We perform thermodynamic and inelastic neutron scattering (INS) measurements to study the lattice dynamics (phonons) of a cubic collinear antiferromagnet Cu$_3$TeO$_6$ which hosts topological spin excitations (magnons). While the specific heat and th