ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding creep of a single-crystalline Co-Al-W-Ta superalloy by studying the deformation mechanism, segregation tendency and stacking fault energy

187   0   0.0 ( 0 )
 نشر من قبل Nicklas Volz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A systematic study of the compression creep properties of a single-crystalline Co-base superalloy (Co-9Al-7.5W-2Ta) was conducted at 950 {deg}C, 975 {deg}C and 1000 {deg}C to reveal the influence of temperature and the resulting diffusion velocity of solutes like Al, W and Ta on the deformation mechanisms. Two creep rate minima are observed at all temperatures indicating that the deformation mechanisms causing these minima are quite similar. Atom-probe tomography analysis reveals elemental segregation to stacking faults, which had formed in the $gammaprime$ phase during creep. Density-functional-theory calculations indicate segregation of W and Ta to the stacking fault and an associated considerable reduction of the stacking fault energy. Since solutes diffuse faster at a higher temperature, segregation can take place more quickly. This results in a significantly faster softening of the alloy, since cutting of the $gammaprime$ precipitate phase by partial dislocations is facilitated through segregation already during the early stages of creep. This is confirmed by transmission electron microscopy analysis. Therefore, not only the smaller precipitate fraction at higher temperatures is responsible for the worse creep properties, but also faster diffusion-assisted shearing of the $gammaprime$ phase by partial dislocations. The understanding of these mechanisms will help in future alloy development by offering new design criteria.

قيم البحث

اقرأ أيضاً

Starting from a semi-empirical potential designed for Cu, we developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies o ver a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (fcc) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to low and high stacking fault energies.
Co-base superalloys are considered as promising high temperature materials besides the well-established Ni-base superalloys. However, Ni appears to be an indispensable alloying element also in Co-base superalloys. To address the influence of the base elements on the deformation behavior, high-temperature compressive creep experiments were performed on a single crystal alloy series that was designed to exhibit a varying Co/Ni ratio and a constant Al, W and Cr content. Creep tests were performed at 900 {deg}C and 250 MPa and the resulting microstructures and defect configurations were characterized via electron microscopy. The minimum creep rates differ by more than one order of magnitude with changing Co/Ni ratio. An intermediate CoNi-base alloy exhibits the overall highest creep strength. Several strengthening contributions like solid solution strengthening of the $gamma$ phase, effective diffusion coefficients or stacking fault energies were quantified. Precipitate shearing mechanisms differ significantly when the base element content is varied. While the Ni-rich superalloys exhibit SISF and SESF shearing, the Co-rich alloys develop extended APBs when the $gamma^prime$ phase is cut. This is mainly attributed to a difference in planar fault energies, caused by a changing segregation behavior. As result, it is assumed that the shearing resistivity and the occurring deformation mechanisms in the $gamma^prime$ phase are crucial for the creep properties of the investigated alloy series.
In a joint theoretical and experimental investigation we show that a series of transition metals with strained body-centered cubic lattice ---W, Ta, Nb, and Mo--- host surface states that are topologically protected by mirror symmetry. Our finding ex tends the class of topologically nontrivial systems by topological crystalline transition metals. The investigation is based on independent calculations of the electronic structures and of topological invariants, the results of which agree with established properties of the Dirac-type surface state in W(110). To further support our prediction, we investigate both experimentally by spin-resolved inverse photoemission and theoretically an unoccupied topologically nontrivial surface state in Ta(110).
We report results of large-scale molecular-dynamics (MD) simulations of dynamic deformation under biaxial tensile strain of pre-strained single-crystalline nanometer-scale-thick face-centered cubic (fcc) copper films. Our results show that stacking f aults, which are abundantly present in fcc metals, may play a significant role in the dissociation, cross-slip, and eventual annihilation of dislocations in small-volume structures of fcc metals. The underlying mechanisms are mediated by interactions within and between extended dislocations that lead to annihilation of Shockley partial dislocations or formation of perfect dislocations. Our findings demonstrate dislocation starvation in small-volume structures with ultra-thin film geometry, governed by a mechanism other than dislocation escape to free surfaces, and underline the significant role of geometry in determining the mechanical response of metallic small-volume structures.
A mesoscale study of a single crystal nickel-base superalloy subjected to an industrially relevant process simulation has revealed the complex interplay between microstructural development and the micromechanical behaviour. As sample gauge volumes we re smaller than the length scale of the highly cored structure of the parent material from which they were produced, their subtle composition differences gave rise to differing work hardening rates, influenced by varying secondary dendrite arm spacings, gamma-prime phase solvus temperatures and a topologically inverted gamma/gamma-prime microstructure. The gamma-prime precipitates possessed a characteristic `X morphology, resulting from the simultaneously active solute transport mechanisms of thermally favoured octodendritic growth and N-type rafting, indicating creep-type mechanisms were prevalent. High resolution-electron backscatter diffraction (HR-EBSD) characterisation reveals deformation patterning that follows the gamma/gamma-prime microstructure, with high geometrically necessary dislocation density fields localised to the gamma/gamma-prime interfaces; Orowan looping is evidently the mechanism that mediated plasticity. Examination of the residual elastic stresses indicated the `X gamma-prime precipitate morphology had significantly enhanced the deformation heterogeneity, resulting in stress states within the gamma channels that favour slip, and that encourage further growth of gamma-prime precipitate protrusions. The combination of such localised plasticity and residual stresses are considered to be critical in the formation of the recrystallisation defect in subsequent post-casting homogenisation heat treatments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا