ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise Classification Aided Attention-Based Neural Network for Monaural Speech Enhancement

124   0   0.0 ( 0 )
 نشر من قبل Lu Ma
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes an noise type classification aided attention-based neural network approach for monaural speech enhancement. The network is constructed based on a previous work by introducing a noise classification subnetwork into the structure and taking the classification embedding into the attention mechanism for guiding the network to make better feature extraction. Specifically, to make the network an end-to-end way, an audio encoder and decoder constructed by temporal convolution is used to make transformation between waveform and spectrogram. Additionally, our model is composed of two long short term memory (LSTM) based encoders, two attention mechanism, a noise classifier and a speech mask generator. Experiments show that, compared with OM-LSA and the previous work, the proposed noise classification aided attention-based approach can achieve better performance in terms of speech quality (PESQ). More promisingly, our approach has better generalization ability to unseen noise conditions.



قيم البحث

اقرأ أيضاً

A person tends to generate dynamic attention towards speech under complicated environments. Based on this phenomenon, we propose a framework combining dynamic attention and recursive learning together for monaural speech enhancement. Apart from a maj or noise reduction network, we design a separated sub-network, which adaptively generates the attention distribution to control the information flow throughout the major network. To effectively decrease the number of trainable parameters, recursive learning is introduced, which means that the network is reused for multiple stages, where the intermediate output in each stage is correlated with a memory mechanism. As a result, a more flexible and better estimation can be obtained. We conduct experiments on TIMIT corpus. Experimental results show that the proposed architecture obtains consistently better performance than recent state-of-the-art models in terms of both PESQ and STOI scores.
The generative adversarial networks (GANs) have facilitated the development of speech enhancement recently. Nevertheless, the performance advantage is still limited when compared with state-of-the-art models. In this paper, we propose a powerful Dyna mic Attention Recursive GAN called DARGAN for noise reduction in the time-frequency domain. Different from previous works, we have several innovations. First, recursive learning, an iterative training protocol, is used in the generator, which consists of multiple steps. By reusing the network in each step, the noise components are progressively reduced in a step-wise manner. Second, the dynamic attention mechanism is deployed, which helps to re-adjust the feature distribution in the noise reduction module. Third, we exploit the deep Griffin-Lim algorithm as the module for phase postprocessing, which facilitates further improvement in speech quality. Experimental results on Voice Bank corpus show that the proposed GAN achieves state-of-the-art performance than previous GAN- and non-GAN-based models
96 - Xiaofei Li , Radu Horaud 2020
This paper proposes a delayed subband LSTM network for online monaural (single-channel) speech enhancement. The proposed method is developed in the short time Fourier transform (STFT) domain. Online processing requires frame-by-frame signal reception and processing. A paramount feature of the proposed method is that the same LSTM is used across frequencies, which drastically reduces the number of network parameters, the amount of training data and the computational burden. Training is performed in a subband manner: the input consists of one frequency, together with a few context frequencies. The network learns a speech-to-noise discriminative function relying on the signal stationarity and on the local spectral pattern, based on which it predicts a clean-speech mask at each frequency. To exploit future information, i.e. look-ahead, we propose an output-delayed subband architecture, which allows the unidirectional forward network to process a few future frames in addition to the current frame. We leverage the proposed method to participate to the DNS real-time speech enhancement challenge. Experiments with the DNS dataset show that the proposed method achieves better performance-measuring scores than the DNS baseline method, which learns the full-band spectra using a gated recurrent unit network.
In this paper, we propose a type of neural network with feedback learning in the time domain called FTNet for monaural speech enhancement, where the proposed network consists of three principal components. The first part is called stage recurrent neu ral network, which is introduced to effectively aggregate the deep feature dependencies across different stages with a memory mechanism and also remove the interference stage by stage. The second part is the convolutional auto-encoder. The third part consists of a series of concatenated gated linear units, which are capable of facilitating the information flow and gradually increasing the receptive fields. Feedback learning is adopted to improve the parameter efficiency and therefore, the number of trainable parameters is effectively reduced without sacrificing its performance. Numerous experiments are conducted on TIMIT corpus and experimental results demonstrate that the proposed network can achieve consistently better performance in terms of both PESQ and STOI scores than two state-of-the-art time domain-based baselines in different conditions.
Non-parallel training is a difficult but essential task for DNN-based speech enhancement methods, for the lack of adequate noisy and paired clean speech corpus in many real scenarios. In this paper, we propose a novel adaptive attention-in-attention CycleGAN (AIA-CycleGAN) for non-parallel speech enhancement. In previous CycleGAN-based non-parallel speech enhancement methods, the limited mapping ability of the generator may cause performance degradation and insufficient feature learning. To alleviate this degradation, we propose an integration of adaptive time-frequency attention (ATFA) and adaptive hierarchical attention (AHA) to form an attention-in-attention (AIA) module for more flexible feature learning during the mapping procedure. More specifically, ATFA can capture the long-range temporal-spectral contextual information for more effective feature representations, while AHA can flexibly aggregate different AFTAs intermediate output feature maps by adaptive attention weights depending on the global context. Numerous experimental results demonstrate that the proposed approach achieves consistently more superior performance over previous GAN-based and CycleGAN-based methods in non-parallel training. Moreover, experiments in parallel training verify that the proposed AIA-CycleGAN also outperforms most advanced GAN-based and Non-GAN based speech enhancement approaches, especially in maintaining speech integrity and reducing speech distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا