ﻻ يوجد ملخص باللغة العربية
We study static and spherically symmetric charged stars with a nontrivial profile of the scalar field $phi$ in Einstein-Maxwell-scalar theories. The scalar field is coupled to a $U(1)$ gauge field $A_{mu}$ with the form $-alpha(phi)F_{mu u}F^{mu u}/4$, where $F_{mu u}=partial_{mu}A_{ u}-partial_{ u} A_{mu}$ is the field strength tensor. Analogous to the case of charged black holes, we show that this type of interaction can induce spontaneous scalarization of charged stars under the conditions $({rm d}alpha/{rm d}phi) (0)=0$ and $({rm d}^2alpha/{rm d}phi^2) (0)>0$. For the coupling $alpha (phi)=exp (-beta phi^2/M_{rm pl}^2)$, where $beta~(<0)$ is a coupling constant and $M_{rm pl}$ is a reduced Planck mass, there is a branch of charged star solutions with a nontrivial profile of $phi$ approaching $0$ toward spatial infinity, besides a branch of general relativistic solutions with a vanishing scalar field, i.e., solutions in the Einstein-Maxwell model. As the ratio $rho_c/rho_m$ between charge density $rho_c$ and matter density $rho_m$ increases toward its maximum value, the mass $M$ of charged stars in general relativity tends to be enhanced due to the increase of repulsive Coulomb force against gravity. In this regime, the appearance of nontrivial branches induced by negative $beta$ of order $-1$ effectively reduces the Coulomb force for a wide range of central matter densities, leading to charged stars with smaller masses and radii in comparison to those in the general relativistic branch. Our analysis indicates that spontaneous scalarization of stars can be induced not only by the coupling to curvature invariants but also by the scalar-gauge coupling in Einstein gravity.
We study the spontaneous scalarization of spherically symmetric, asymptotically flat boson stars in the $(alpha {cal R} + gamma {cal G}) phi^2$ scalar-tensor gravity model. These compact objects are made of a complex valued scalar field that has harm
We discuss the Damour--Esposito-Far`ese model of gravity, which predicts the spontaneous scalarization of neutron stars in a certain range of parameter space. In the cosmological setup, the scalar field responsible for scalarization is subject to a t
We study static, spherically symmetric and electrically charged black hole solutions in a quadratic Einstein-scalar-Gauss-Bonnet gravity model. Very similar to the uncharged case, black holes undergo spontaneous scalarization for sufficiently large s
We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vecto
In this paper, we study the spontaneous scalarization of an extended, self-gravitating system which is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a real massive scalar field condenses on this Melvin magn