ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge Transfer for Few-shot Segmentation of Novel White Matter Tracts

410   0   0.0 ( 0 )
 نشر من قبل Qi Lu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNNs) have achieved stateof-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). These CNNs require a large number of manual delineations of the WM tracts of interest for training, which are generally labor-intensive and costly. The expensive manual delineation can be a particular disadvantage when novel WM tracts, i.e., tracts that have not been included in existing manual delineations, are to be analyzed. To accurately segment novel WM tracts, it is desirable to transfer the knowledge learned about existing WM tracts, so that even with only a few delineations of the novel WM tracts, CNNs can learn adequately for the segmentation. In this paper, we explore the transfer of such knowledge to the segmentation of novel WM tracts in the few-shot setting. Although a classic fine-tuning strategy can be used for the purpose, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. We hypothesize that the weights of this last layer can bear valuable information for segmenting the novel WM tracts and thus completely discarding the information is not optimal. In particular, we assume that the novel WM tracts can correlate with existing WM tracts and the segmentation of novel WM tracts can be predicted with the logits of existing WM tracts. In this way, better initialization of the last layer than random initialization can be achieved for fine-tuning. Further, we show that a more adaptive use of the knowledge in the last layer for segmenting existing WM tracts can be conveniently achieved by simply inserting a warmup stage before classic fine-tuning. The proposed method was evaluated on a publicly available dMRI dataset, where we demonstrate the benefit of our method for few-shot segmentation of novel WM tracts.

قيم البحث

اقرأ أيضاً

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model. Our codes and models are available at https://github.com/MyChocer/KGTN .
Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes. If there are only a few training data and annotations, the object detectors easily overfit and fail to generalize. It exposes the practical weakness of the object detectors. On the other hand, human can easily master new reasoning rules with only a few demonstrations using previously learned knowledge. In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples. Central to our method is prototypical knowledge transfer with an attached meta-learner. The meta-learner takes support set images that include the few examples of the novel categories and base categories, and predicts prototypes that represent each category as a vector. Then, the prototypes reweight each RoI (Region-of-Interest) feature vector from a query image to remodels R-CNN predictor heads. To facilitate the remodeling process, we predict the prototypes under a graph structure, which propagates information of the correlated base categories to the novel categories with explicit guidance of prior knowledge that represents correlations among categories. Extensive experiments on the PASCAL VOC dataset verifies the effectiveness of the proposed method.
103 - Vivek Roy , Yan Xu , Yu-Xiong Wang 2020
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the tr aining data of the few-shot classes using generative models with the few-shot training samples as the seeds. However, due to the limited number of the few-shot seeds, the generated samples usually have small diversity, making it difficult to train a discriminative classifier for the few-shot classes. To enrich the diversity of the generated samples, we propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information. Such intra-class information is obtained with a two-step mechanism. First, a regressor trained only on the many-shot classes is used to evaluate the few-shot class means from only a few samples. Second, superclasses are clustered, and the statistical mean and feature variance of each superclass are used as transferable knowledge inherited by the children few-shot classes. Such knowledge is then used by a generator to augment the sparse training data to help the downstream classification tasks. Extensive experiments show that our method achieves state-of-the-art across different datasets and $n$-shot settings.
Reducing the amount of supervision required by neural networks is especially important in the context of semantic segmentation, where collecting dense pixel-level annotations is particularly expensive. In this paper, we address this problem from a ne w perspective: Incremental Few-Shot Segmentation. In particular, given a pretrained segmentation model and few images containing novel classes, our goal is to learn to segment novel classes while retaining the ability to segment previously seen ones. In this context, we discover, against all beliefs, that fine-tuning the whole architecture with these few images is not only meaningful, but also very effective. We show how the main problems of end-to-end training in this scenario are i) the drift of the batch-normalization statistics toward novel classes that we can fix with batch renormalization and ii) the forgetting of old classes, that we can fix with regularization strategies. We summarize our findings with five guidelines that together consistently lead to the state of the art on the COCO and Pascal-VOC 2012 datasets, with different number of images per class and even with multiple learning episodes.
Few-shot semantic segmentation aims at learning to segment a target object from a query image using only a few annotated support images of the target class. This challenging task requires to understand diverse levels of visual cues and analyze fine-g rained correspondence relations between the query and the support images. To address the problem, we propose Hypercorrelation Squeeze Networks (HSNet) that leverages multi-level feature correlation and efficient 4D convolutions. It extracts diverse features from different levels of intermediate convolutional layers and constructs a collection of 4D correlation tensors, i.e., hypercorrelations. Using efficient center-pivot 4D convolutions in a pyramidal architecture, the method gradually squeezes high-level semantic and low-level geometric cues of the hypercorrelation into precise segmentation masks in coarse-to-fine manner. The significant performance improvements on standard few-shot segmentation benchmarks of PASCAL-5i, COCO-20i, and FSS-1000 verify the efficacy of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا