ﻻ يوجد ملخص باللغة العربية
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond. These networks have an inherent feature of parallelism that allows them to boost the capacity and enhance the security of communication systems. Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware. In quantum networks, entanglement is a key resource that allows for data transmission between different nodes. However, to reap the benefits of entanglement and enable efficient quantum communication, the number of generated entangled pairs must be optimized. Indeed, if the entanglement generation rates are not optimized, then some of these valuable resources will be discarded and lost. In this paper, the problem of optimizing the entanglement generation rates and their distribution over a quantum memory is studied. In particular, a quantum network in which users have heterogeneous distances and applications is considered. This problem is posed as a mixed integer nonlinear programming optimization problem whose goal is to efficiently utilize the available quantum memory by distributing the quantum entangled pairs in a way that maximizes the user satisfaction. An interior point optimization method is used to solve the optimization problem and extensive simulations are conducted to evaluate the effectiveness of the proposed system. Simulation results show the key design considerations for efficient quantum networks, and the effect of different network parameters on the network performance.
Cell association scheme determines which base station (BS) and mobile user (MU) should be associated with and also plays a significant role in determining the average data rate a MU can achieve in heterogeneous networks. However, the explosion of dig
Traffic load balancing and radio resource management is key to harness the dense and increasingly heterogeneous deployment of next generation $5$G wireless infrastructure. Strategies for aggregating user traffic from across multiple radio access tech
Traffic load balancing and resource allocation is set to play a crucial role in leveraging the dense and increasingly heterogeneous deployment of multi-radio wireless networks. Traffic aggregation across different access points (APs)/radio access tec
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the applicati
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra