ﻻ يوجد ملخص باللغة العربية
Membranes are present in all cells and tissues. Mathematical models of cells and tissues need a compact mathematical description of membranes with a resolution of about 1 nm. Membranes isolate cells because ions have difficulty penetrating the dielectric barrier they create. Here we introduce a dielectric mathematical membrane condition to replace a condition that did not include dielectric properties. Our mathematical membrane condition includes a dielectric lipid bilayer punctured by channels that conduct ions selectively.
Complex fluids flow in complex ways in complex structures. Transport of water and various organic and inorganic molecules in the central nervous system are important in a wide range of biological and medical processes [C. Nicholson, and S. Hrabv{e}to
We present a novel mathematical approach to model noise in dynamical systems. We do so by considering dynamics of a chain of diffusively coupled Nagumo cells affected by noise. We show that the noise in transmembrane current can be effectively modell
The accumulation of potassium in the narrow space outside nerve cells is a classical subject of biophysics that has received much attention recently. It may be involved in potassium accumulation textcolor{black}{including} spreading depression, perha
The optic nerve head (ONH) typically experiences complex neural- and connective-tissue structural changes with the development and progression of glaucoma, and monitoring these changes could be critical for improved diagnosis and prognosis in the gla
Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commerc