ﻻ يوجد ملخص باللغة العربية
The recent spate of cyber attacks towards Internet of Things (IoT) devices in smart homes calls for effective techniques to understand, characterize, and unveil IoT device activities. In this paper, we present a new system, named IoTAthena, to unveil IoT device activities from raw network traffic consisting of timestamped IP packets. IoTAthena characterizes each IoT device activity using an activity signature consisting of an ordered sequence of IP packets with inter-packet time intervals. IoTAthena has two novel polynomial time algorithms, sigMatch and actExtract. For any given signature, sigMatch can capture all matches of the signature in the raw network traffic. Using sigMatch as a subfunction, actExtract can accurately unveil the sequence of various IoT device activities from the raw network traffic. Using the network traffic of heterogeneous IoT devices collected at the router of a real-world smart home testbed and a public IoT dataset, we demonstrate that IoTAthena is able to characterize and generate activity signatures of IoT device activities and accurately unveil the sequence of IoT device activities from raw network traffic.
The adoption of Internet of Things (IoT) technologies is increasing and thus IoT is seemingly shifting from hype to reality. However, the actual use of IoT over significant timescales has not been empirically analyzed. In other words the reality rema
The adoption of Internet of Things (IoT) technologies in businesses is increasing and thus enterprise IoT (EIoT) is seemingly shifting from hype to reality. However, the actual use of EIoT over significant timescales has not been empirically analyzed
Machine learning finds rich applications in Internet of Things (IoT) networks such as information retrieval, traffic management, spectrum sensing, and signal authentication. While there is a surge of interest to understand the security issues of mach
This paper has been withdrawn due to errors in the analysis of data with Carrier Access Rate control and statistical methodologies.
The popularity of the Internet of Things (IoT) devices makes it increasingly important to be able to fingerprint them, for example in order to detect if there are misbehaving or even malicious IoT devices in ones network. The aim of this paper is to