ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey III: The Perseus-Pisces supercluster and the Southern Great Wall as traced by X-ray luminous galaxy clusters

71   0   0.0 ( 0 )
 نشر من قبل Hans Boehringer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Perseus-Pisces supercluster is known as one of the largest structures in the nearby Universe that has been charted by the galaxy and galaxy cluster distributions. For the latter mostly clusters from the Abell catalogue have been used. Here we take a new approach to a quantitative characterisation of the Perseus-Pisces supercluster using a statistically complete sample of X-ray luminous galaxy groups and clusters from our CLASSIX galaxy cluster redshift survey. We used a friends-of-friends technique to construct the supercluster membership. We also studied the structure of the Southern Great Wall, which merges with the Perseus-Pisces supercluster with a slightly increased friends-of-friends linking length. In this work we discuss the geometric structure of the superclusters, compare the X-ray luminosity distribution of the members with that of the surroundings, and provide an estimate of the supercluster mass. These results establish Perseus-Pisces as the largest superstructure in the Universe at redshifts z <= 0.03. With the new data this supercluster extends through the zone of avoidance, which has also been indicated by some studies of the galaxy distribution by means of HI observations. We investigated whether the shapes of the member groups and clusters in X-rays are aligned with the major axis of the supercluster. We find no evidence for a pronounced alignment, except for the ellipticities of Perseus and AWM7, which are aligned with the separation vector of the two systems and weakly with the supercluster.

قيم البحث

اقرأ أيضاً

To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. We correlated a catalogue of 1383 rotation m easures (RM) of extragalactic polarised radio sources with X-ray luminous galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II). We compared the RM in the line of sight of clusters within their projected radii of r_500 with those outside and found a significant excess of the dispersion of the RM in the cluster regions. Since the observed RM is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the standard deviation of the RM for an ensemble of clusters. We found a standard deviation of the RM inside r_500 of about 120 +- 21 rad m^-2. This compares to about 56 +- 8 rad m^-2 outside. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess RM. Modelling the electron density distribution in the intracluster medium with a self-similar model, we found that the dispersion of the RM increases with the column density, and we deduce a magnetic field value of about 2 - 6 (l/10kpc)^-1/2 microG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium cells. This magnetic field energy density amounts to a few percent of the average thermal energy density in clusters. When we assumed the magnetic energy density to be a constant fraction of the thermal energy density, we deduced a slightly lower value for this fraction of 3 - 10 (l/10kpc)^-1/2 per mille.
Previous studies of the galaxy and galaxy cluster distribution in the local Universe found indications for a large extension of the Local Supercluster up to a radius of 190 h_70^-1 Mpc. We are using our large and highly complete CLASSIX survey of X-r ay luminous galaxy clusters detected in the ROSAT All Sky Survey to trace the matter distribution in the local Universe and to explore the size of the flattened local density structure associated with the Local Supercluster. The Local Supercluster is oriented almost perpendicular to the Galactic plane. Since Galactic extinction increases towards the Galactic plane, objects are on average more easily visible perpendicular to the plane than close to it, also producing an apparent concentration of objects along the Local Supercluster. We can correct for this bias by a careful treatment of the survey selection function. We find a significant overdensity of clusters in a flattened structure along the Supergalactic plane with a thickness of about 50 Mpc and an extent of about 100 Mpc radius. Structures at a distance larger than 100 Mpc are not correlated to the Local Supercluster any more. The matter density contrast of the local superstructure to the surroundings is about a factor of 1.3 - 2.3. Within the Supergalactic plane the matter is concentrated mostly in two superclusters, the Perseus-Pisces Chain and Hydra-Centaurus supercluster. We have shown in our earlier work that the local Universe in a region with a radius of 100 - 170 Mpc has a lower density than the cosmic mean. For this reason, the Local Supercluster is not overdense with respect to the cosmic mean density. Therefore this local superstructure will not collapse as a whole in the future, but rather fragment.
The current status of our efforts to trace cosmic structure with 10^6 galaxies (2MASS), 10^3 galaxy clusters (NORAS II cluster survey), and precision measurements for 10^2 galaxy clusters (HIFLUGCS) is given. The latter is illustrated in more detail with results on the gas temperature and metal abundance structure for 10^0 cluster (A1644) obtained with XMM-Newton.
We propose a new approach to the missing baryons problem. Building on the common assumption that the missing baryons are in the form of the Warm Hot Intergalactic Medium (WHIM), we further assumed here that the galaxy luminosity density can be used a s a tracer of the WHIM. The latter assumption is supported by our finding of a significant correlation between the WHIM density and the galaxy luminosity density in the hydrodynamical simulations of Cui et al. (2012). We further found that the fraction of the gas mass in the WHIM phase is substantially (by a factor of $sim$1.6) higher within the large scale galactic filaments, i.e. $sim$70%, compared to the average in the full simulation volume of $sim$0.1,Gpc$^3$. The relation between the WHIM overdensity and the galaxy luminosity overdensity within the galactic filaments is consistent with linear: $delta_{rm whim},=,0.7,pm,0.1,times,delta_mathrm{LD}^{0.9 pm 0.2}$. We applied our procedure to the line of sight to the blazar H2356-309 and found evidence for the WHIM in correspondence of the Sculptor Wall (z $sim$0.03 and $log{N_H}$ = $19.9^{+0.1}_{-0.3}$) and Pisces-Cetus superclusters (z $sim$0.06 and $log{N_H}$ = $19.7^{+0.2}_{-0.3}$), in agreement with the redshifts and column densities of the X-ray absorbers identified and studied by Fang et al. (2010) and Zappacosta et al. (2010). This agreement indicates that the galaxy luminosity density and galactic filaments are reliable signposts for the WHIM and that our method is robust in estimating the WHIM density. The signal that we detected cannot originate from the halos of the nearby galaxies since they cannot account for the large WHIM column densities that our method and X-ray analysis consistently find in the Sculptor Wall and Pisces-Cetus superclusters.
In this paper we study the large scale structures and their galaxy content around the most X-ray luminous cluster known, RX J1347.5-1145 at z=0.45. We make use of ugriz CFHT MEGACAM photometry and VIMOS VLT spectroscopy to identify structures around the RXJ1347 on a scale of 20x20 Mpc2. We construct maps of the galaxy distribution and the fraction of blue galaxies. We study the photometric galaxy properties as a function of environment, traced by the galaxy density. We identify group candidates based on galaxy overdensities and study their galaxy content. We also use available GALEX NUV imaging to identify strong unobscured star forming galaxies. We find that the large scale structure around RXJ1347 extends in the NE-SW direction for at least 20 Mpc, in which most of the group candidates are located. As other studies, we find that the fraction of blue galaxies (Fblue) is a function of galaxy number density, but the bulk of the trend is due to galaxies belonging to massive systems. The fraction of the UV-bright galaxies is also function of environment, but their relative numbers compared to the blue population seems to be constant regardless of the environment. These UV emitters also have similar properties at all galaxy densities, indicating that the transition between galaxy types occurs in short time-scales. Candidate galaxy groups show a large variation in their galaxy content and Fblue in those groups display little dependence with galaxy density. This may indicate possible differences in their evolutionary status or the processes that are acting in groups are different than in clusters. The large scale structure around rich clusters are dynamic places for galaxy evolution. In the case of RXJ1347 the transformation may start within infalling groups to finish with the removal of the cold gas once galaxies are accreted in massive systems. (ABRIDGED)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا