ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding and minimizing resonance frequency deviations on a 4-inch kilo-pixel kinetic inductance detector array

79   0   0.0 ( 0 )
 نشر من قبل Shibo Shu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the advantages of kinetic inductance detectors is their intrinsic frequency domain multiplexing capability. However, fabrication imperfections usually give rise to resonance frequency deviations, which create frequency collision and limit the array yield. Here we study the resonance frequency deviation of a 4-inch kilo-pixel lumped-element kinetic inductance detector (LEKID) array using optical mapping. Using the measured resonator dimensions and film thickness, the fractional deviation can be explained within $pm 25times 10^{-3}$, whereas the residual deviation is due to variation of electric film properties. Using the capacitor trimming technique, the fractional deviation is decreased by a factor of 14. The yield of the trimming process is found to be 97%. The mapping yield, measured under a 110~K background, is improved from 69% to 76%, which can be further improved to 81% after updating our readout system. With the improvement in yield, the capacitor trimming technique may benefit future large-format LEKID arrays.

قيم البحث

اقرأ أيضاً

Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of X-ray space observatories. These arrays are required to achieve an energy resolution $Delta E$ < 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays for use in future laboratory and space-based X-ray astrophysics experiments and ground-based spectrometers. In this contribution we report on the development and the characterization of a uniform 32$times$32 pixel array with 140$times$30 $mu$m$^2$ Ti/Au TESs with Au X-ray absorber. We report upon extensive measurements on 60 pixels in order to show the uniformity of our large TES array. The averaged critical temperature is $T_mathrm{c}$ = 89.5$pm$0.5 mK and the variation across the array ($sim$1 cm) is less than 1.5 mK. We found a large region of detectors bias points between 20% and 40% of the normal-state resistance where the energy resolution is constantly lower than 3 eV. In particular, results show a summed X-ray spectral resolution $Delta E_mathrm{FWHM}$ = 2.50$pm$0.04 eV at a photon energy of 5.9 keV, measured in a single-pixel mode using a frequency domain multiplexing (FDM) readout system developed at SRON/VTT at bias frequencies ranging from 1 to 5 MHz. Moreover we compare the logarithmic resistance sensitivity with respect to temperature and current ($alpha$ and $beta$ respectively) and their correlation with the detectors noise parameter $M$, showing an homogeneous behaviour for all the measured pixels in the array.
Superconducting detectors are a modern technology applied in various fields. The microwave kinetic inductance detector (MKID) is one of cutting-edge superconducting detector. It is based on the principle of a superconducting resonator circuit. A radi ation entering the MKID breaks the Cooper pairs in the superconducting resonator, and the intensity of the radiation is detected as a variation of the resonant condition. Therefore, calibration of the detector responsivity, i.e., the variation of the resonant phase with respect to the number of Cooper-pair breaks (quasiparticles), is important. We propose a method for responsivity calibration. Microwaves used for the detector readout locally raise the temperature in each resonator, which increases the number of quasiparticles. Since the magnitude of the temperature rise depends on the power of readout microwaves, the number of quasiparticles also depends on the power of microwaves. By changing the power of the readout microwaves, we simultaneously measure the phase difference and lifetime of quasiparticles. We calculate the number of quasiparticles from the measured lifetime and by using a theoretical formula. This measurement yields a relation between the phase response as a function of the number of quasiparticles. We demonstrate this responsivity calibration using the MKID maintained at 285mK. We also confirm consistency between the results obtained using this method and conventional calibration methods in terms of the accuracy.
In Kinetic Inductance Detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the devi ce is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the Noise Equivalent Power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficien t low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at at an observation centre frequency of 850 GHz and 20% fractional bandwidth. The overall system has an excellent sensitivity, with an average detector sensitivity NEPdet=3x10^-19 W/rt(Hz) measured using a thermal calibration source. At a loading power per pixel of 50fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30dB. This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.
We present recent developments in Kinetic Inductance Detectors (KID) for large arrays of detectors. The main application is ground-based millimeter wave astronomy. We focus in particular, as a case study, on our own experiment: NIKA (Neel IRAM KID Ar rays). NIKA is today the best in-the-field experiment using KID-based instruments, and consists of a dual-band imaging system designed for the IRAM 30 meter telescope at Pico Veleta. We describe in this article, after a general context introduction, the KID working principle and the readout electronics, crucial to take advantage of the intrinsic KID multiplexability. We conclude with a small subset of the astronomical sources observed simultaneously at 2 mm and 1.4 mm by NIKA during the last run, held in October 2010. Nous decrivons les recents developpements concernant les grandes matrices de detecteurs `a inductance cinetique (KID) dont lapplication principale est lastronomie millimetrique au sol. Nous detaillons en particulier notre propre camera : NIKA (Neel IRAM KID Arrays) qui est aujourdhui linstrument le plus abouti mettant en oeuvre des KIDs. NIKA est une camera bi-bande conc{c}ue pour le radiotelescope de 30 m`etres de lIRAM `a Pico Veleta. Apres avoir decrit le contexte instrumental dans lequel ils sinscrivent, nous expliquerons le principe de fonctionnement des KIDs et de leur electronique de lecture, cruciale pour pouvoir tirer parti de leur potentiel de muliplexage. Pour finir, nous presentons quelques exemples dobservations effectuees par NIKA dans les bandes de 2 mm et 1,4 mm au cours de la derni`ere campagne dobservation en octobre 2010.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا