ﻻ يوجد ملخص باللغة العربية
We introduce a novel methodology for the operation of an early %warning alert system for gravitational waves. It is based on short convolutional neural networks. We focus on compact binary coalescences, for light, intermediate and heavy binary-neutron-star systems. The signals are 1-dimensional time series $-$ the whitened time-strain $-$ injected in Gaussian noise built from the power-spectral density of the LIGO detectors at design sensitivity. We build short 1-dimensional convolutional neural networks to detect these types of events by training them on part of the early inspiral. We show that such networks are able to retrieve these signals from a small portion of the waveform.
GW170817 has led to the first example of multi-messenger astronomy with observations from gravitational wave interferometers and electromagnetic telescopes combined to characterise the source. However, detections of the early inspiral phase by the gr
Observations of gravitational waves from compact binary mergers have enabled unique tests of general relativity in the dynamical and non-linear regimes. One of the most important such tests are constraints on the post-Newtonian (PN) corrections to th
Bayesian model selection provides a powerful and mathematically transparent framework to tackle hypothesis testing, such as detection tests of gravitational waves emitted during the coalescence of binary systems using ground-based laser interferomete
We seek to achieve the Holy Grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior $p(theta|D)$ for the source parameters $theta$, given the detector data $D$. To do so, we trai
The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics.