ترغب بنشر مسار تعليمي؟ اضغط هنا

Deception Detection in Videos using the Facial Action Coding System

63   0   0.0 ( 0 )
 نشر من قبل Usama Bajwa Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Facts are important in decision making in every situation, which is why it is important to catch deceptive information before they are accepted as facts. Deception detection in videos has gained traction in recent times for its various real-life application. In our approach, we extract facial action units using the facial action coding system which we use as parameters for training a deep learning model. We specifically use long short-term memory (LSTM) which we trained using the real-life trial dataset and it provided one of the best facial only approaches to deception detection. We also tested cross-dataset validation using the Real-life trial dataset, the Silesian Deception Dataset, and the Bag-of-lies Deception Dataset which has not yet been attempted by anyone else for a deception detection system. We tested and compared all datasets amongst each other individually and collectively using the same deep learning training model. The results show that adding different datasets for training worsen the accuracy of the model. One of the primary reasons is that the nature of these datasets vastly differs from one another.



قيم البحث

اقرأ أيضاً

Most work on automated deception detection (ADD) in video has two restrictions: (i) it focuses on a video of one person, and (ii) it focuses on a single act of deception in a one or two minute video. In this paper, we propose a new ADD framework whic h captures long term deception in a group setting. We study deception in the well-known Resistance game (like Mafia and Werewolf) which consists of 5-8 players of whom 2-3 are spies. Spies are deceptive throughout the game (typically 30-65 minutes) to keep their identity hidden. We develop an ensemble predictive model to identify spies in Resistance videos. We show that features from low-level and high-level video analysis are insufficient, but when combined with a new class of features that we call LiarRank, produce the best results. We achieve AUCs of over 0.70 in a fully automated setting. Our demo can be found at http://home.cs.dartmouth.edu/~mbolonkin/scan/demo/
84 - Mingyu Ding , An Zhao , Zhiwu Lu 2018
Automated deception detection (ADD) from real-life videos is a challenging task. It specifically needs to address two problems: (1) Both face and body contain useful cues regarding whether a subject is deceptive. How to effectively fuse the two is th us key to the effectiveness of an ADD model. (2) Real-life deceptive samples are hard to collect; learning with limited training data thus challenges most deep learning based ADD models. In this work, both problems are addressed. Specifically, for face-body multimodal learning, a novel face-focused cross-stream network (FFCSN) is proposed. It differs significantly from the popular two-stream networks in that: (a) face detection is added into the spatial stream to capture the facial expressions explicitly, and (b) correlation learning is performed across the spatial and temporal streams for joint deep feature learning across both face and body. To address the training data scarcity problem, our FFCSN model is trained with both meta learning and adversarial learning. Extensive experiments show that our FFCSN model achieves state-of-the-art results. Further, the proposed FFCSN model as well as its robust training strategy are shown to be generally applicable to other human-centric video analysis tasks such as emotion recognition from user-generated videos.
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the exis ting attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.
We propose StartNet to address Online Detection of Action Start (ODAS) where action starts and their associated categories are detected in untrimmed, streaming videos. Previous methods aim to localize action starts by learning feature representations that can directly separate the start point from its preceding background. It is challenging due to the subtle appearance difference near the action starts and the lack of training data. Instead, StartNet decomposes ODAS into two stages: action classification (using ClsNet) and start point localization (using LocNet). ClsNet focuses on per-frame labeling and predicts action score distributions online. Based on the predicted action scores of the past and current frames, LocNet conducts class-agnostic start detection by optimizing long-term localization rewards using policy gradient methods. The proposed framework is validated on two large-scale datasets, THUMOS14 and ActivityNet. The experimental results show that StartNet significantly outperforms the state-of-the-art by 15%-30% p-mAP under the offset tolerance of 1-10 seconds on THUMOS14, and achieves comparable performance on ActivityNet with 10 times smaller time offset.
114 - Mingfei Gao , Yingbo Zhou , Ran Xu 2020
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundaries for training, which hinders the scalability of online action detection systems. We propose WOAD, a weakly supervised framework that can be trained using only video-class labels. WOAD contains two jointly-trained modules, i.e., temporal proposal generator (TPG) and online action recognizer (OAR). Supervised by video-class labels, TPG works offline and targets at accurately mining pseudo frame-level labels for OAR. With the supervisory signals from TPG, OAR learns to conduct action detection in an online fashion. Experimental results on THUMOS14, ActivityNet1.2 and ActivityNet1.3 show that our weakly-supervised method largely outperforms weakly-supervised baselines and achieves comparable performance to the previous strongly-supervised methods. Beyond that, WOAD is flexible to leverage strong supervision when it is available. When strongly supervised, our method obtains the state-of-the-art results in the tasks of both online per-frame action recognition and online detection of action start.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا