ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite irreducible modules of a class of $mathbb{Z}^+$-graded Lie conformal algebras

108   0   0.0 ( 0 )
 نشر من قبل Yanyong Hong
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce the notion of completely non-trivial module of a Lie conformal algebra. By this notion, we classify all finite irreducible modules of a class of $mathbb{Z}^+$-graded Lie conformal algebras $mathcal{L}=bigoplus_{i=0}^{infty} mathbb{C}[partial]L_i$ satisfying $ [{L_0}_lambda L_0]=(partial+2lambda)L_0,$ and $[{L_1}_lambda L_i] eq 0$ for any $iin mathbb{Z}^+$. These Lie conformal algebras include Block type Lie conformal algebra $mathcal{B}(p)$ and map Virasoro Lie conformal algebra $mathcal{V}(mathbb{C}[T])=Virotimes mathbb{C}[T]$. As a result, we show that all non-trivial finite irreducible modules of these algebras are free of rank one as a $mathbb{C}[partial]$-module.



قيم البحث

اقرأ أيضاً

In the present paper, we prove that any finite non-trivial irreducible module over a rank two Lie conformal algebra $mathcal{H}$ is of rank one. We also describe the actions of $mathcal{H}$ on its finite irreducible modules explicitly. Moreover, we s how that all finite non-trivial irreducible modules of finite Lie conformal algebras whose semisimple quotient is the Virasoro Lie conformal algebra are of rank one.
We classify finite irreducible conformal modules over a class of infinite Lie conformal algebras ${frak {B}}(p)$ of Block type, where $p$ is a nonzero complex number. In particular, we obtain that a finite irreducible conformal module over ${frak {B} }(p)$ may be a nontrivial extension of a finite conformal module over ${frak {Vir}}$ if $p=-1$, where ${frak {Vir}}$ is a Virasoro conformal subalgebra of ${frak {B}}(p)$. As a byproduct, we also obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal algebras ${frak b}(n)$ for $nge1$.
111 - Yucai Su , Xiaoqing Yue 2021
In a previous paper by the authors, we obtain the first example of a finitely freely generated simple $mathbb Z$-graded Lie conformal algebra of linear growth that cannot be embedded into any general Lie conformal algebra. In this paper, we obtain, a s a byproduct, another class of such Lie conformal algebras by classifying $mathbb Z$-graded simple Lie conformal algebras ${cal G}=oplus_{i=-1}^infty{cal G}_i$ satisfying the following, (1) ${cal G}_0cong{rm Vir}$, the Virasoro conformal algebra; (2) Each ${cal G}_i$ for $ige-1$ is a ${rm Vir}$-module of rank one. These algebras include some Lie conformal algebras of Block type.
In the present paper, we introduce a class of infinite Lie conformal superalgebras $mathcal{S}(p)$, which are closely related to Lie conformal algebras of extended Block type defined in cite{CHS}. Then all finite non-trivial irreducible conformal mod ules over $mathcal{S}(p)$ for $pinC^*$ are completely classified. As an application, we also present the classifications of finite non-trivial irreducible conformal modules over finite quotient algebras $mathfrak{s}(n)$ for $ngeq1$ and $mathfrak{sh}$ which is isomorphic to a subalgebra of Lie conformal algebra of $N=2$ superconformal algebra. Moreover, as a generalized version of $mathcal{S}(p)$, the infinite Lie conformal superalgebras $mathcal{GS}(p)$ are constructed, which have a subalgebra isomorphic to the finite Lie conformal algebra of $N=2$ superconformal algebra.
In this paper, we introduce a class of infinite Lie conformal algebras $mathfrak{B}(alpha,beta,p)$, which are the semi-direct sums of Block type Lie conformal algebra $mathfrak{B}(p)$ and its non-trivial conformal modules of $Z$-graded free intermedi ate series. The annihilation algebras are a class of infinite-dimensional Lie algebras, which include a lot of interesting subalgebras: Virasoro algebra, Block type Lie algebra, twisted Heisenberg-Virasoro algebra and so on. We give a complete classification of all finite non-trivial irreducible conformal modules of $mathfrak{B}(alpha,beta,p)$ for $alpha,betainC, pinC^*$. As an application, the classifications of finite irreducible conformal modules over a series of finite Lie conformal algebras $mathfrak{b}(n)$ for $ngeq1$ are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا