ﻻ يوجد ملخص باللغة العربية
OFDM sensing is gaining increasing popularity in wideband radar applications as well as in joint communication and radar/radio sensing (JCAS). As JCAS will potentially be integrated into future mobile networks where OFDM is crucial, OFDM sensing is envisioned to be ubiquitously deployed. A fast Fourier transform (FFT) based OFDM sensing (FOS) method was proposed a decade ago and has been regarded as a de facto standard given its simplicity. In this article, we introduce an easy trick -- a pre-processing on target echo -- to further reduce the computational complexity of FOS without degrading key sensing performance. Underlying the trick is a newly disclosed feature of the target echo in OFDM sensing which, to the best of our knowledge, has not been effectively exploited yet.
This paper proposes a new large-scale mask-compliant spectral precoder (LS-MSP) for orthogonal frequency division multiplexing systems. In this paper, we first consider a previously proposed mask-compliant spectral precoding scheme that utilizes a ge
Recently, integrating the communication and sensing functions into a common network has attracted a great amount of attention. This paper considers the advanced signal processing techniques for enabling the radar to sense the environment via the comm
Integrating sensing into standardized communication systems can potentially benefit many consumer applications that require both radio frequency functions. However, without an effective sensing method, such integration may not achieve the expected ga
This paper considers device-free sensing in an orthogonal frequency division multiplexing (OFDM) cellular network to enable integrated sensing and communication (ISAC). A novel two-phase sensing framework is proposed to localize the passive targets t
Large-scale antenna (LSA) has gained a lot of attention recently since it can significantly improve the performance of wireless systems. Similar to multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM,