ﻻ يوجد ملخص باللغة العربية
We present a validation of the Dark Energy Survey Year 3 (DES Y3) $3times2$-point analysis choices by testing them on Buzzard v2.0, a new suite of cosmological simulations that is tailored for the testing and validation of combined galaxy clustering and weak lensing analyses. We show that the Buzzard v2.0 simulations accurately reproduce many important aspects of the DES Y3 data, including photometric redshift and magnitude distributions, and the relevant set of two-point clustering and weak lensing statistics. We then show that our model for the $3times2$-point data vector is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples, demonstrating robustness to uncertainties in the modeling of the non-linear matter power spectrum, non-linear galaxy bias and higher-order lensing corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration methodology, including information from photometry, spectroscopy, clustering cross-correlations, and galaxy-galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.
We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$times$2pt): (i) cosmic shear using 100 million source g
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i)
Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the me
We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, $Lambda$CDM and $w$CDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the
Galaxy-galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter halos, which is important both for galaxy evolution and cosmology. We extend the measurement and modeling of the galaxy-galaxy lensing signal in t