ﻻ يوجد ملخص باللغة العربية
We report direct visualization of gigahertz-frequency Lamb waves propagation in aluminum nitride phononic circuits by transmission-mode microwave impedance microscopy (TMIM). Consistent with the finite-element modeling, the acoustic eigenmodes in both a horn-shaped coupler and a sub-wavelength waveguide are revealed in the TMIM images. Using fast Fourier transform filtering, we quantitatively analyze the acoustic loss of individual Lamb modes along the waveguide and the power coupling coefficient between the waveguide and the parabolic couplers. Our work provides insightful information on the propagation, mode conversion, and attenuation of acoustic waves in piezoelectric nanostructures, which is highly desirable for designing and optimizing phononic devices for microwave signal processing and quantum information transduction.
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical patter
One of the most fundamental forms of magnon-phonon interaction is an intrinsic property of magnetic materials, the magnetoelastic coupling. This particular form of interaction has been the basis for describing magnetic materials and their strain rela
Recent theory has predicted large temperature differences between the in-plane (LA and TA) and out-of-plane (ZA) acoustic phonon baths in locally-heated suspended graphene. To verify these predictions, and their implications for understanding the non
We numerically model key building blocks of a phononic integrated circuit that enable phonon routing in high-acoustic-index waveguides. Our particular focus is on Gallium Nitride-on-sapphire phononic platform which has recently demonstrated high acou
Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fu