ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact correlations in quantum chains

94   0   0.0 ( 0 )
 نشر من قبل Nick Jones
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite free-fermion systems being dubbed exactly solvable, they generically do not admit closed expressions for nonlocal quantities such as topological string correlations or measures of entanglement. We derive closed expressions for such nonlocal quantities for a dense subclass of certain classes of topological fermionic wires (classes BDI and AIII). Our results also apply to spin chains known as generalised cluster models. While there is a bijection between general models in these fermionic classes and Laurent polynomials, restricting to polynomials with degenerate zeros leads to a plethora of exact results. In particular, (1) we derive closed expressions for the string correlation functions -- the order parameters for the topological phases in these classes; (2) we obtain an exact formula for the characteristic polynomial of the correlation matrix, giving insight into the entanglement of the ground state; (3) the latter implies that the ground state can be described by a matrix product state (MPS) with a finite bond dimension in the thermodynamic limit -- an independent and explicit construction for the BDI class is given in a concurrent work (Jones, Bibo, Jobst, Pollmann, Smith, Verresen, arXiv:2105.12143); (4) for BDI models with even integer topological invariant, all non-zero eigenvalues of the transfer matrix are identified as products of zeros and inverse zeros of the aforementioned polynomial. We show how general models in these classes can be obtained by taking limits of the models studied in this work, which can be used to apply limits of our results to the general case. To the best of our knowledge, these results constitute the first application of Days formula and Gorodetskys formula from the theory of Toeplitz determinants to the context of many-body quantum physics.



قيم البحث

اقرأ أيضاً

We study quasi-exact quantum error correcting codes and quantum computation with them. A quasi-exact code is an approximate code such that it contains a finite number of scaling parameters, the tuning of which can flow it to corresponding exact codes , serving as its fixed points. The computation with a quasi-exact code cannot realize any logical gate to arbitrary accuracy. To overcome this, the notion of quasi-exact universality is proposed, which makes quasi-exact quantum computation a feasible model especially for executing moderate-size algorithms. We find that the incompatibility between universality and transversality of the set of logical gates does not persist in the quasi-exact scenario. A class of covariant quasi-exact codes is defined which proves to support transversal and quasi-exact universal set of logical gates for $SU(d)$. This work opens the possibility of quantum computation with quasi-exact universality, transversality, and fault tolerance.
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renorm alization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that as none of the studied measures can detect the infinite order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
We consider parameter estimations with probes being the boundary driven/dissipated non- equilibrium steady states of XXZ spin 1/2 chains. The parameters to be estimated are the dissipation coupling and the anisotropy of the spin-spin interaction. In the weak coupling regime we compute the scaling of the Fisher information, i.e. the inverse best sensitivity among all estimators, with the number of spins. We find superlinear scalings and transitions between the distinct, isotropic and anisotropic, phases. We also look at the best relative error which decreases with the number of particles faster than the shot-noise only for the estimation of anisotropy.
Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems with topological order turned out to give a natural physical realization of quantum error correcting codes (QECC) in their groundspaces. More recently, in the context of the AdS/CFT correspondence, it has been argued that eigenstates of CFTs with a holographic dual should also form QECCs. These two examples raise the question of how generally eigenstates of many-body models form quantum codes. In this work we establish new connections between quantum chaos and translation-invariance in many-body spin systems, on one hand, and approximate quantum error correcting codes (AQECC), on the other hand. We first observe that quantum chaotic systems exhibiting the Eigenstate Thermalization Hypothesis (ETH) have eigenstates forming approximate quantum error-correcting codes. Then we show that AQECC can be obtained probabilistically from translation-invariant energy eigenstates of every translation-invariant spin chain, including integrable models. Applying this result to 1D classical systems, we describe a method for using local symmetries to construct parent Hamiltonians that embed these codes into the low-energy subspace of gapless 1D quantum spin chains. As explicit examples we obtain local AQECC in the ground space of the 1D ferromagnetic Heisenberg model and the Motzkin spin chain model with periodic boundary conditions, thereby yielding non-stabilizer codes in the ground space and low energy subspace of physically plausible 1D gapless models.
160 - Ning Wu , Wen-Long You 2019
We study the emergence of exact Majorana zero modes (EMZMs) in a one-dimensional quantum transverse compass model with both the nearest-neighbor interactions and transverse fields varying over space. By transforming the spin system into a quadratic M ajorana-fermion model, we derive an exact formula for the number of the emergent EMZMs, which is found to depend on the partition nature of the lattice sites on which the magnetic fields vanish. We also derive explicit expressions for the wavefunctions of these EMZMs and show that they indeed depend on fine features of the foregoing partition of site indices. Based on the above rigorous results about the EMZMs, we provide an interpretation for the interesting dependence of the eigenstate-degeneracy on the transverse fields observed in prior literatures. As a special case, we employ a plane-wave ansatz to exactly solve an open compass chain with alternating nearest-neighbor interactions and staggered magnetic fields. Explicit forms of the canonical Majorana modes diagonalizing the model are given even for finite chains. We show that besides the possibly existing EMZMs, no almost Majorana zero modes exist unless the fields on both the two sublattices are turned off. Our results might shed light on the control of ground-state degeneracies by solely tuning the external fields in related systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا