ترغب بنشر مسار تعليمي؟ اضغط هنا

M5-branes wrapped on a spindle

165   0   0.0 ( 0 )
 نشر من قبل Pietro Ferrero
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct supersymmetric $AdS_5times Sigma$ solutions of $D=7$ gauged supergravity, where $Sigma$ is a two-dimensional orbifold known as a spindle. These uplift on $S^4$ to solutions of $D=11$ supergravity which have orbifold singularites. We argue that the solutions are dual to $d=4$, $mathcal{N}=1$ SCFTs that arise from $N$ M5-branes wrapped on a spindle, embedded as a holomorphic curve inside a Calabi-Yau three-fold. In contrast to the usual topological twist solutions, the superconformal R-symmetry mixes with the isometry of the spindle in the IR, and we verify this via a field theory calculation, as well as reproducing the gravity formula for the central charge.



قيم البحث

اقرأ أيضاً

We construct supersymmetric $AdS_3times Sigma$ solutions of minimal gauged supergravity in $D=5$, where $Sigma$ is a two-dimensional orbifold known as a spindle. Remarkably, these uplift on $S^5$, or more generally on any regular Sasaki-Einstein mani fold, to smooth solutions of type IIB supergravity. The solutions are dual to $d=2$, $mathcal{N}=(0,2)$ SCFTs and we show that the central charge for the gravity solution agrees with a field theory calculation associated with D3-branes wrapped on $Sigma$. Unlike for smooth $Sigma$ the superconformal R-symmetry mixes with the $U(1)$ isometry of the spindle.
We construct a consistent Kaluza-Klein reduction of $D=11$ supergravity on $Sigma_2times S^4$, where $Sigma_2=S^2,mathbb{R}^2$ or $H^2$, or a quotient thereof, at the level of the bosonic fields. The result is a gauged $N=4$, $D=5$ supergravity theor y coupled to three vector multiplets, with the gauging lying in an $SO(2)times SE(3)subset SO(5,3)$ subgroup of the $SO(1,1)times SO(5,3)$ global symmetry group of the ungauged theory. For $Sigma_2=H^2$, the $D=5$ theory has a maximally supersymmetric $AdS_5$ vacuum which uplifts to the known solution of $D=11$ supergravity corresponding to M5-branes wrapping a Riemann surface with genus greater than one and dual to an $N=2$ SCFT in $d=4$. For $Sigma_2=S^2$, we find two $AdS_5$ solutions, one of which is new, and both of which are unstable. There is an additional subtruncation to an $N=2$ gauged supergravity coupled to two vector multiplets, with very special real manifold $SO(1,1)times SO(1,1)$, and a single hypermultiplet, with quaternionic Kahler manifold $SU(2,1)/S[U(2)times U(1)]$ and gauging associated with an $SO(2)timesmathbb{R}subset SU(2,1)$ subgroup.
We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the gauge/gravity duality and the recently proposed 3d-3d relation, we deduce quantitative predictions for the perturbative free energy of a Chern-Simons theory o n hyperbolic 3-space. Remarkably, the perturbative expansion is expected to terminate at two-loops in the large N limit. We check the correspondence numerically in a number of examples, and confirm the N^3 scaling with precise coefficients.
We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $mathcal{R}$. Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-$N$ expansion of supersymmetric partition functions for an infinite class of three-dimensional $mathcal{N}=2$ SCFTs of class $mathcal{R}$. We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS$_4$ black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.
In this paper, we investigate the properties of a membrane in the M5-brane background. Through solving the classical equations of motion of the membrane, we can understand the classical dynamics of the membrane in this background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا