ﻻ يوجد ملخص باللغة العربية
We construct supersymmetric $AdS_5times Sigma$ solutions of $D=7$ gauged supergravity, where $Sigma$ is a two-dimensional orbifold known as a spindle. These uplift on $S^4$ to solutions of $D=11$ supergravity which have orbifold singularites. We argue that the solutions are dual to $d=4$, $mathcal{N}=1$ SCFTs that arise from $N$ M5-branes wrapped on a spindle, embedded as a holomorphic curve inside a Calabi-Yau three-fold. In contrast to the usual topological twist solutions, the superconformal R-symmetry mixes with the isometry of the spindle in the IR, and we verify this via a field theory calculation, as well as reproducing the gravity formula for the central charge.
We construct supersymmetric $AdS_3times Sigma$ solutions of minimal gauged supergravity in $D=5$, where $Sigma$ is a two-dimensional orbifold known as a spindle. Remarkably, these uplift on $S^5$, or more generally on any regular Sasaki-Einstein mani
We construct a consistent Kaluza-Klein reduction of $D=11$ supergravity on $Sigma_2times S^4$, where $Sigma_2=S^2,mathbb{R}^2$ or $H^2$, or a quotient thereof, at the level of the bosonic fields. The result is a gauged $N=4$, $D=5$ supergravity theor
We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the gauge/gravity duality and the recently proposed 3d-3d relation, we deduce quantitative predictions for the perturbative free energy of a Chern-Simons theory o
We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $mathcal{R}$. Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to
In this paper, we investigate the properties of a membrane in the M5-brane background. Through solving the classical equations of motion of the membrane, we can understand the classical dynamics of the membrane in this background.