ﻻ يوجد ملخص باللغة العربية
In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing lattice QCD calculable matrix elements. Our findings are also compared with the pertinent phenomenological determinations. Inter alia, we are employing the summation Generalized Eigenvalue Problem (sGEVP) technique in order to optimize our control over the excited state contamination which can be one of the most serious systematic errors in this type of calculations. A crucial novel ingredient of our analysis is the parameterization of systematic errors using Jacobi polynomials to characterize and remove both lattice spacing and higher twist contaminations, as well as the leading twist distribution. This method can be expanded in further studies to remove all other systematic errors.
We report the first-ever calculation of the isovector flavor combination of the chiral-odd twist-3 parton distribution $h_L(x)$ for the proton from lattice QCD. We employ gauge configurations with two degenerate light, a strange and a charm quark ($N
Ioffe-time distributions, which are functions of the Ioffe-time $ u$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the
The fraction of the longitudinal momentum of ${}^3text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is fo
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as we