ﻻ يوجد ملخص باللغة العربية
Superconducting circuits with coupler architecture receive considerable attention due to their advantages in tunability and scalability. Although single-qubit gates with low error have been achieved, high-fidelity two-qubit gates in coupler architecture are still challenging. This paper pays special attention to examining the gate error sources and primarily concentrates on the related physical mechanism of ZZ parasitic couplings using a systematic effective Hamiltonian approach. Benefiting from the effective Hamiltonian, we provide simple and straightforward insight into the ZZ parasitic couplings that were investigated previously from numerical and experimental perspectives. The analytical results obtained provide exact quantitative conditions for eliminating ZZ parasitic couplings, and trigger four novel realizable parameter regions in which higher fidelity two-qubit gates are expected. Beyond the numerical simulation, we also successfully drive a simple analytical result of the two-qubit gate error from which the trade-off effect between qubit energy relaxation effects and ZZ parasitic couplings is understood, and the resulting two-qubit gate error can be estimated straightforwardly. Our study opens up new opportunities to implement high-fidelity two-qubit gates in superconducting coupler architecture.
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems and thus thoug
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time corr
We study the speed/fidelity trade-off for a two-qubit phase gate implemented in $^{43}$Ca$^+$ hyperfine trapped-ion qubits. We characterize various error sources contributing to the measured fidelity, allowing us to account for errors due to single-q
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore, a low-error-rate, easy-to-scale two-qubit gate scheme is highl
We report the implementation of universal two- and three-qubit entangling gates on neutral atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states, and are implemented in