ترغب بنشر مسار تعليمي؟ اضغط هنا

The COS-legacy survey of C IV absorbers: properties and origins of the intervening systems

74   0   0.0 ( 0 )
 نشر من قبل Aditya Manuwal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aditya Manuwal




اسأل ChatGPT حول البحث

We present here results from a survey of intervening C IV absorbers at $z < 0.16$ conducted using 223 sightlines from the Hubble Spectroscopic Legacy Archive. Most systems (83%) out of the total sample of 69 have simple kinematics with 1 or 2 C IV components. In the 22 C IV systems with well constrained H I column densities, the temperatures from the $b$-values imply predominantly photoionized plasma ($Tleq 10^5$ K) and non-thermal dynamics. These systems also have solar or higher metallicities. We obtain a C IV line density of $dmathcal{N}/dX = 5.1pm 1.0$ for $log [N(C~IV)~(cm^{-2})]geq12.9$, and $Omega_{C~IV}=(8.01pm 1.62) times 10^{-8}$ for $12.9 leq log [N(C~IV)~(cm^{-2})] leq 15.0$. The C IV bearing diffuse gas in the $z < 0.16$ Universe has a metallicity of $(2.07~{pm}~0.43)~times~10^{-3}$ Z$_{odot}$, an order of magnitude more than the metal abundances in the IGM at high redshifts ($z gtrsim 5$), and consistent with the slow build-up of metals in the diffuse circum/intergalactic space with cosmic time. For $z<0.015$ (complete above $L>0.01L^star$), the Sloan Digital Sky Survey provides a tentative evidence of declining covering fraction for strong C IV ($N>10^{13.5}~cm^{-2}$) with $rho$ (impact parameter) and $rho/R_mathrm{vir}$. However, the increase at high separations suggests that strong systems are not necessarily coincident with such galaxies. We also find that strong C IV absorption at $z<0.051$ is not coincident with galaxy over-dense regions complete for $L>0.13L^star$



قيم البحث

اقرأ أيضاً

We statistically study the physical properties of a sample of narrow absorption line (NAL) systems looking for empirical evidences to distinguish between intrinsic and intervening NALs without taking into account any a priori definition or velocity c ut-off. We analyze the spectra of 100 quasars with 3.5 < z$rm_{em}$ < 4.5, observed with X-shooter/VLT in the context of the XQ-100 Legacy Survey. We detect a $sim$ 8 $sigma$ excess in the number density of absorbers within 10,000 km/s of the quasar emission redshift with respect to the random occurrence of NALs. This excess does not show a dependence on the quasar bolometric luminosity and it is not due to the redshift evolution of NALs. It extends far beyond the standard 5000 km/s cut-off traditionally defined for associated absorption lines. We propose to modify this definition, extending the threshold to 10,000 km/s when also weak absorbers (equivalent width < 0.2 AA) are considered. We infer NV is the ion that better traces the effects of the quasar ionization field, offering the best statistical tool to identify intrinsic systems. Following this criterion we estimate that the fraction of quasars in our sample hosting an intrinsic NAL system is 33 percent. Lastly, we compare the properties of the material along the quasar line of sight, derived from our sample, with results based on close quasar pairs investigating the transverse direction. We find a deficiency of cool gas (traced by CII) along the line of sight associated with the quasar host galaxy, in contrast with what is observed in the transverse direction.
We wish to study the extent and subparsec scale spatial structure of intervening quasar absorbers, mainly those involving neutral and molecular gas. We have selected quasar absorption systems with high spectral resolution and good S/N data, with some of their lines falling on quasar emission features. By investigating the consistency of absorption profiles seen for lines formed either against the quasar continuum source or on the much more extended emission line region (ELR), we can probe the extent and structure of the foreground absorber over the extent of the ELR (0.3-1 pc). The spatial covering analysis provides constraints on the transverse size of the absorber and thus is complementary to variability or photoionisation modelling studies. The methods we used to identify spatial covering or structure effects involve line profile fitting and curve of growth analysis.We have detected three absorbers with unambiguous non uniformity effects in neutral gas. For one extreme case, the FeI absorber at z_abs=0.45206 towards HE 0001-2340, we derive a coverage factor of the ELR of at most 0.10 and possibly very close to zero; this implies an absorber overall size no larger than 0.06 pc. For the z_abs=2.41837 CI absorber towards QSO J1439+1117, absorption is significantly stronger towards the ELR than towards the continuum source in several CI and CI* velocity components pointing to factors of about two spatial variations of their column densities and the presence of structures at the 100 au - 0.1 pc scale. The other systems with firm or possible effects can be described in terms of partial covering of the ELR, with coverage factors in the range 0.7 - 1. The overall results for cold, neutral absorbers imply a transverse extent of about five times or less the ELR size, which is consistent with other known constraints.
Rich complexes of associated absorption lines (AALs) in quasar spectra provide unique information about gaseous infall, outflows, and feedback processes in quasar environments. We study five quasars at redshifts 3.1 to 4.4 with AAL complexes containi ng from 7 to 18 CIV 1548, 1551 systems in high-resolution spectra. These complexes span velocity ranges $lesssim$3600 km/s within $lesssim$8200 km/s of the quasar redshifts. All are highly ionised with no measurable low-ionisation ions like SiII or CII, and all appear to form in the quasar/host galaxy environments based on evidence for line locking, partial covering of the background light source, strong NV absorption, and/or roughly solar metallicities, and on the implausibility of such complexes forming in unrelated intervening galaxies. Most of the lines in all five complexes identify high-speed quasar-driven outflows at velocity shifts $vlesssim -1000$ km/s. Four of the complexes also have lines at smaller blueshifted velocities that might form in ambient interstellar clouds, low-speed outflows or at feedback interfaces in the host galaxies where high-speed winds impact and shred interstellar clouds. The partial covering we measure in some of the high-speed outflow lines require small absorbing clouds with characteristic sizes $lesssim$1 pc or $lesssim$0.01 pc. The short survival times of these clouds require locations very close to the quasars, or cloud creation in situ at larger distances perhaps via feedback/cloud-shredding processes. The AAL complex in one quasar, J1008+3623, includes unusually narrow CIV systems at redshifted velocities $350lesssim vlesssim640$ km/s that are excellent candidates for gaseous infall towards the quasar, e.g., cold-mode accretion or a gravitationally-bound galactic fountain.
Previous studies have shown that the incidence rate of intervening strong MgII absorbers towards GRBs were a factor of 2 - 4 higher than towards quasars. Exploring the similar sized and uniformly selected legacy data sets XQ-100 and XSGRB, each consi sting of 100 quasar and 81 GRB afterglow spectra obtained with a single instrument (VLT/X-shooter), we demonstrate that there is no disagreement in the number density of strong MgII absorbers with rest-frame equivalent widths $W_r^{2796} >$ 1 {AA} towards GRBs and quasars in the redshift range 0.1 < z < 5. With large and similar sample sizes, and path length coverages of $Delta$z = 57.8 and 254.4 for GRBs and quasars, respectively, the incidences of intervening absorbers are consistent within 1 sigma uncertainty levels at all redshifts. For absorbers at z < 2.3 the incidence towards GRBs is a factor of 1.5$pm$0.4 higher than the expected number of strong MgII absorbers in SDSS quasar spectra, while for quasar absorbers observed with X-shooter we find an excess factor of 1.4$pm$0.2 relative to SDSS quasars. Conversely, the incidence rates agree at all redshifts with reported high spectral resolution quasar data, and no excess is found. The only remaining discrepancy in incidences is between SDSS MgII catalogues and high spectral resolution studies. The rest-frame equivalent width distribution also agrees to within 1 sigma uncertainty levels between the GRB and quasar samples. Intervening strong MgII absorbers towards GRBs are therefore neither unusually frequent, nor unusually strong.
113 - K.E.K. Coppin 2014
We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infra red Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا