ﻻ يوجد ملخص باللغة العربية
Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies, such as transformations including scaling, shifting and interpolating, require hyperparameter optimization that can easily cost hundreds of GPU hours. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN) that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. The proposed data augmentation strategy is fast to train and the synthetic data leads to higher recognition accuracy than using data augmented with a classical approach.
Any spatio-temporal movement or reorientation of the hand, done with the intention of conveying a specific meaning, can be considered as a hand gesture. Inputs to hand gesture recognition systems can be in several forms, such as depth images, monocul
Gesture recognition is a fundamental tool to enable novel interaction paradigms in a variety of application scenarios like Mixed Reality environments, touchless public kiosks, entertainment systems, and more. Recognition of hand gestures can be nowad
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-d
Gesture recognition and hand motion tracking are important tasks in advanced gesture based interaction systems. In this paper, we propose to apply a sliding windows filtering approach to sample the incoming streams of data from data gloves and a deci
Previous methods for skeleton-based gesture recognition mostly arrange the skeleton sequence into a pseudo picture or spatial-temporal graph and apply deep Convolutional Neural Network (CNN) or Graph Convolutional Network (GCN) for feature extraction