ﻻ يوجد ملخص باللغة العربية
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information. Due to the non-differentiable characteristic, there still exist difficulties in designing well-performed SNNs. Recently, SNNs trained with backpropagation have shown superior performance due to the proposal of the gradient approximation. However, the performance on complex tasks is still far away from the deep neural networks. Taking inspiration from the autapse in the brain which connects the spiking neurons with a self-feedback connection, we apply an adaptive time-delayed self-feedback on the membrane potential to regulate the spike precisions. As well as, we apply the balanced excitatory and inhibitory neurons mechanism to control the spiking neurons output dynamically. With the combination of the two mechanisms, we propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN). The experimental results on several standard datasets have shown that the two modules not only accelerate the convergence of the network but also improve the accuracy. For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance. For the CIFAR10 dataset, our BackEISNN also gets remarkable performance on a relatively light structure that competes against state-of-the-art SNNs.
A companion paper introduces a nonlinear network with Hebbian excitatory (E) neurons that are reciprocally coupled with anti-Hebbian inhibitory (I) neurons and also receive Hebbian feedforward excitation from sensory (S) afferents. The present paper
Dynamic excitatory-inhibitory (E-I) balance is a paradigmatic mechanism invoked to explain the irregular low firing activity observed in the cortex. However, we will show that the E-I balance can be at the origin of other regimes observable in the br
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinit
It is widely appreciated that well-balanced excitation and inhibition are necessary for proper function in neural networks. However, in principle, such balance could be achieved by many possible configurations of excitatory and inhibitory strengths,
Spiking neural networks (SNNs) has attracted much attention due to its great potential of modeling time-dependent signals. The firing rate of spiking neurons is decided by control rate which is fixed manually in advance, and thus, whether the firing