ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a problem in calculus of variations motivated by a quantitative isoperimetric inequality in the plane. More precisely, the aim of this article is the computation of the minimum of the variational problem $$inf_{uinmathcal{W}}frac{displaystyleint_{-pi}^{pi}[(u)^2-u^2]dtheta}{left[int_{-pi}^{pi}|u| dthetaright]^2}$$ where $uin mathcal{W}$ is a $H^1(-pi,pi)$ periodic function, with zero average on $(-pi,pi)$ and orthogonal to sine and cosine.
Function approximation and recovery via some sampled data have long been studied in a wide array of applied mathematics and statistics fields. Analytic tools, such as the Poincare inequality, have been handy for estimating the approximation errors in
We introduce a twice differentiable augmented Lagrangian for nonlinear optimization with general inequality constraints and show that a strict local minimizer of the original problem is an approximate strict local solution of the augmented Lagrangian
We propose that the full Poincar{e} beam with any polarization geometries can be pictorially described by the hybrid-order Poincar{e} sphere whose eigenstates are defined as a fundamental-mode Gaussian beam and a Laguerre-Gauss beam. A robust and eff
In this paper, a kind of neural network with time-varying delays is proposed to solve the problems of quadratic programming. The delay term of the neural network changes with time t. The number of neurons in the neural network is n + h, so the struct
Numerical tools for constraints solving are a cornerstone to control verification problems. This is evident by the plethora of research that uses tools like linear and convex programming for the design of control systems. Nevertheless, the capability