ﻻ يوجد ملخص باللغة العربية
The performance of state-of-the-art neural rankers can deteriorate substantially when exposed to noisy inputs or applied to a new domain. In this paper, we present a novel method for fine-tuning neural rankers that can significantly improve their robustness to out-of-domain data and query perturbations. Specifically, a contrastive loss that compares data points in the representation space is combined with the standard ranking loss during fine-tuning. We use relevance labels to denote similar/dissimilar pairs, which allows the model to learn the underlying matching semantics across different query-document pairs and leads to improved robustness. In experiments with four passage ranking datasets, the proposed contrastive fine-tuning method obtains improvements on robustness to query reformulations, noise perturbations, and zero-shot transfer for both BERT and BART based rankers. Additionally, our experiments show that contrastive fine-tuning outperforms data augmentation for robustifying neural rankers.
Recently, pre-trained language models such as BERT have been applied to document ranking for information retrieval, which first pre-train a general language model on an unlabeled large corpus and then conduct ranking-specific fine-tuning on expert-la
Deep language models such as BERT pre-trained on large corpus have given a huge performance boost to the state-of-the-art information retrieval ranking systems. Knowledge embedded in such models allows them to pick up complex matching signals between
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask appro
Technology-assisted review (TAR) refers to iterative active learning workflows for document review in high recall retrieval (HRR) tasks. TAR research and most commercial TAR software have applied linear models such as logistic regression or support v