ترغب بنشر مسار تعليمي؟ اضغط هنا

The New Generation Planetary Population Synthesis (NGPPS). VI. Introducing KOBE: Kepler Observes Bern Exoplanets. Theoretical perspectives on the architecture of planetary systems: Peas in a pod

86   0   0.0 ( 0 )
 نشر من قبل Lokesh Mishra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) Observations of exoplanets indicate the existence of several correlations in the architecture of planetary systems. Exoplanets within a system tend to be of similar size and mass, evenly spaced, and are often ordered in size and mass. Small planets are frequently packed in tight configurations, while large planets often have wider orbital spacing. Together, these correlations are called the peas in a pod trends in the architecture of planetary systems. In this paper these trends are investigated in theoretically simulated planetary systems and compared with observations. Whether these correlations emerge from astrophysical processes or the detection biases of the transit method is examined. Synthetic planetary system were simulated using the Generation III Bern Model. KOBE, a new computer code, simulates the geometrical limitations of the transit method and applies the detection biases and completeness of the Kepler survey. This allows simulated planetary systems to be compared with observations. The architecture of synthetic planetary systems, observed via KOBE, show the peas in a pod trends in good agreement with observations. These correlations are also present in the theoretical underlying population, from the Bern Model, indicating that these trends are probably of astrophysical origin. The physical processes involved in planet formation are responsible for the emergence of evenly spaced planets with similar sizes and masses. The size--mass similarity trends are primordial and originate from the oligarchic growth of protoplanetary embryos and the uniform growth of planets at early times. Later stages in planet formation allows planets within a system to grow at different rates, thereby decreasing these correlations. The spacing and packing correlations are absent at early times and arise from dynamical interactions.

قيم البحث

اقرأ أيضاً

Previous work concerning planet formation around low-mass stars has often been limited to large planets and individual systems. As current surveys routinely detect planets down to terrestrial size in these systems, a more holistic approach that refle cts their diverse architectures is timely. Here, we investigate planet formation around low-mass stars and identify differences in the statistical distribution of planets. We compare the synthetic planet populations to observed exoplanets. We used the Generation III Bern model of planet formation and evolution to calculate synthetic populations varying the central star from solar-like stars to ultra-late M dwarfs. This model includes planetary migration, N-body interactions between embryos, accretion of planetesimals and gas, and long-term contraction and loss of the gaseous atmospheres. We find that temperate, Earth-sized planets are most frequent around early M dwarfs and more rare for solar-type stars and late M dwarfs. The planetary mass distribution does not linearly scale with the disk mass. The reason is the emergence of giant planets for M*>0.5 Msol, which leads to the ejection of smaller planets. For M*>0.3 Msol there is sufficient mass in the majority of systems to form Earth-like planets, leading to a similar amount of Exo-Earths going from M to G dwarfs. In contrast, the number of super-Earths and larger planets increases monotonically with stellar mass. We further identify a regime of disk parameters that reproduces observed M-dwarf systems such as TRAPPIST-1. However, giant planets around late M dwarfs such as GJ 3512b only form when type I migration is substantially reduced. We quantify the stellar mass dependence of multi-planet systems using global simulations of planet formation and evolution. The results compare well to current observational data and predicts trends that can be tested with future observations.
Recent observational findings have suggested a positive correlation between the occurrence rates of inner super-Earths and outer giant planets. These results raise the question of whether this trend can be reproduced and explained by planet formation theory. Here, we investigate the properties of inner super-Earths and outer giant planets that form according to a core accretion scenario. We study the mutual relations between these planet species in synthetic planetary systems and compare them to the observed exoplanet population. We invoked the Generation 3 Bern model of planet formation and evolution to simulate 1000 multi-planet systems. We then confronted these synthetic systems with the observed sample, taking into account the detection bias that distorts the observed demographics. The formation of warm super-Earths and cold Jupiters in the same system is enhanced compared to the individual appearances, although it is weaker than what has been proposed through observations. We attribute the discrepancy to warm and dynamically active giant planets that frequently disrupt the inner systems, particularly in high-metallicity environments. In general, a joint occurrence of the two planet types requires intermediate solid reservoirs in the originating protoplanetary disk. Furthermore, we find differences in the volatile content of planets in different system architectures and predict that high-density super-Earths are more likely to host an outer giant. This correlation can be tested observationally.
Revealing the mechanisms shaping the architecture of planetary systems is crucial for our understanding of their formation and evolution. In this context, it has been recently proposed that stellar clustering might be the key in shaping the orbital a rchitecture of exoplanets. The main goal of this work is to explore the factors that shape the orbits of planets. We used a homogeneous sample of relatively young FGK dwarf stars with RV detected planets and tested the hypothesis that their association to phase space (position-velocity) over-densities (cluster stars) and under-densities (field stars) impacts the orbital periods of planets. When controlling for the host star properties, on a sample of 52 planets orbiting around cluster stars and 15 planets orbiting around field star, we found no significant difference in the period distribution of planets orbiting these two populations of stars. By considering an extended sample of 73 planets orbiting around cluster stars and 25 planets orbiting field stars, a significant different in the planetary period distributions emerged. However, the hosts associated to stellar under-densities appeared to be significantly older than their cluster counterparts. This did not allow us to conclude whether the planetary architecture is related to age, environment, or both. We further studied a sample of planets orbiting cluster stars to study the mechanism responsible for the shaping of orbits of planets in similar environments. We could not identify a parameter that can unambiguously be responsible for the orbital architecture of massive planets, perhaps, indicating the complexity of the issue. Conclusions. Increased number of planets in clusters and in over-density environments will help to build large and unbiased samples which will then allow to better understand the dominant processes shaping the orbits of planets.
The bright star $pi$ Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the ESOs Very-Large Telescope (VLT). The star hosts a multi-planet system (a transiti ng 4 M$_oplus$ planet at $sim$0.07 au, and a sub-stellar companion on a $sim$2100-day eccentric orbit) which is particularly appealing for a precise multi-technique characterization. With the new ESPRESSO observations, that cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of new photometric transits of $pi$ Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. We analyse the enlarged spectroscopic and photometric datasets and compare the results to those in the literature. We further characterize the system by means of absolute astrometry with Hipparcos and Gaia. We used the spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. We present a precise characterization of the planetary system around $pi$ Men. The ESPRESSO radial velocities alone (with typical uncertainty of 10 cm/s) allow for a precise retrieval of the Doppler signal induced by $pi$ Men c. The residuals show an RMS of 1.2 m/s, and we can exclude companions with a minimum mass less than $sim$2 M$_oplus$ within the orbit of $pi$ Men c). We improve the ephemeris of $pi$ Men c using 18 additional TESS transits, and in combination with the astrometric measurements, we determine the inclination of the orbital plane of $pi$ Men b with high precision ($i_{b}=45.8^{+1.4}_{-1.1}$ deg). This leads to the precise measurement of its absolute mass $m_{b}=14.1^{+0.5}_{-0.4}$ M$_{Jup}$, and shows that the planetary orbital planes are highly misaligned.
We present a three-species (H$^+$, O$^+$ and e$^-$) multi-fluid magnetohydrodynamic (MHD) model, endowed with the requisite upper atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from Earth-like exop lanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between $2.19 times 10^{26}$ s$^{-1}$ to $2.37 times 10^{26}$ s$^{-1}$. In contrast, the obliquity can influence the atmospheric escape rate ($sim$ $10^{28}$ s$^{-1}$) by more than a factor of $2$ (or $200%$) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا