ﻻ يوجد ملخص باللغة العربية
Recent experiments in quantum simulators have provided evidence for the Many-Body Localized (MBL) phase in 1D and 2D bosonic quantum matter. The theoretical study of such bosonic MBL, however, is a daunting task due to the unbounded nature of its Hilbert space. In this work, we introduce a method to compute the long-time real-time evolution of 1D and 2D bosonic systems in an MBL phase at strong disorder and weak interactions. We focus on local dynamical indicators that are able to distinguish an MBL phase from an Anderson localized one. In particular, we consider the temporal fluctuations of local observables, the spatiotemporal behavior of two-time correlators and Out-Of-Time-Correlators (OTOCs). We show that these few-body observables can be computed with a computational effort that depends only polynomially on system size but is independent of the target time, by extending a recently proposed numerical method [Phys. Rev. B 99, 241114 (2019)] to mixed states and bosons. Our method also allows us to surrogate our numerical study with analytical considerations of the time-dependent behavior of the studied quantities.
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added
Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the characterization of a broad landscape of MBL ph
Many-body localized (MBL) systems do not approach thermal equilibrium under their intrinsic dynamics; MBL and conventional thermalizing systems form distinct dynamical phases of matter, separated by a phase transition at which equilibrium statistical
At long times residual couplings to the environment become relevant even in the most isolated experiments, creating a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a c