ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring information exchange and brokerage capacity of healthcare teams

85   0   0.0 ( 0 )
 نشر من قبل Andrea Fronzetti Colladon PhD
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: The purpose of this paper is to explore possible factors impacting team performance in healthcare, by focusing on information exchange within and across hospitals boundaries. Design/methodology/approach: Through a web-survey and group interviews, the authors collected data on the communication networks of 31 members of four interdisciplinary healthcare teams involved in a system redesign initiative within a large US childrens hospital. The authors mapped their internal and external social networks based on management advice, technical support and knowledge dissemination within and across departments, studying interaction patterns that involved more than 700 actors. The authors then compared team performance and social network metrics such as degree, closeness and betweenness centrality, and computed cross ties and constraint levels for each team. Findings: The results indicate that highly effective teams were more inwardly focused and less connected to outside members. Moreover, highly recognized teams communicated frequently but, overall, less intensely than the others. Originality/value: Mapping knowledge flows and balancing internal focus and outward connectivity of interdisciplinary teams may help healthcare decision makers in their attempt to achieve high value for patients, families and employees.



قيم البحث

اقرأ أيضاً

Gould and Fernandez (1989) developed a local brokerage measure that defines brokering roles based on the group membership of the nodes from the incoming and outgoing edges. This paper extends on this brokerage measure to account for weighted edges an d introduces the Weighted-Normalized Gould-Fernandez measure (WNGF). The measure is applied to the EUREGIO inter-regional trade dataset that is a complete, weighted, and directed graph, when transformed. The results gained from the WNGF measure are compared to those from two dichotomized networks: a threshold network and a multiscale backbone network. The results show that edge-weights carry important information regarding the network structure and that retaining edge-weight information ensures the heterogeneity and the nuanced understanding of the brokerage roles.
Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to engineering to biology. This paper is focused on generative models of large-scale bipartite graphs, also known as two-way graphs or two-mode networks . We propose two generative models that can be easily tuned to reproduce the characteristics of real-world networks, not just qualitatively, but quantitatively. The characteristics we consider are the degree distributions and the metamorphosis coefficient. The metamorphosis coefficient, a bipartite analogue of the clustering coefficient, is the proportion of length-three paths that participate in length-four cycles. Having a high metamorphosis coefficient is a necessary condition for close-knit community structure. We define edge, node, and degreewise metamorphosis coefficients, enabling a more detailed understanding of the bipartite connectivity that is not explained by degree distribution alone. Our first model, bipartite Chung-Lu (CL), is able to reproduce real-world degree distributions, and our second model, bipartite block two-level Erdos-Renyi (BTER), reproduces both the degree distributions as well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on several real-world data sets.
Networks are at the core of modeling many engineering contexts, mainly in the case of infrastructures and communication systems. The resilience of a network, which is the property of the system capable of absorbing external shocks, is then of paramou nt relevance in the applications. This paper deals with this topic by advancing a theoretical proposal for measuring the resilience of a network. The proposal is based on the study of the shocks propagation along the patterns of connections among nodes. The theoretical model is tested on the real-world instances of two important airport systems in the US air traffic network; Illinois (including the hub of Chicago) and New York states (with JFK airport).
Social networks play a fundamental role in the diffusion of information. However, there are two different ways of how information reaches a person in a network. Information reaches us through connections in our social networks, as well as through the influence of external out-of-network sources, like the mainstream media. While most present models of information adoption in networks assume information only passes from a node to node via the edges of the underlying network, the recent availability of massive online social media data allows us to study this process in more detail. We present a model in which information can reach a node via the links of the social network or through the influence of external sources. We then develop an efficient model parameter fitting technique and apply the model to the emergence of URL mentions in the Twitter network. Using a complete one month trace of Twitter we study how information reaches the nodes of the network. We quantify the external influences over time and describe how these influences affect the information adoption. We discover that the information tends to jump across the network, which can only be explained as an effect of an unobservable external influence on the network. We find that only about 71% of the information volume in Twitter can be attributed to network diffusion, and the remaining 29% is due to external events and factors outside the network.
Social media are massive marketplaces where ideas and news compete for our attention. Previous studies have shown that quality is not a necessary condition for online virality and that knowledge about peer choices can distort the relationship between quality and popularity. However, these results do not explain the viral spread of low-quality information, such as the digital misinformation that threatens our democracy. We investigate quality discrimination in a stylized model of online social network, where individual agents prefer quality information, but have behavioral limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood to become prevalent at the system level. We find that both information overload and limited attention contribute to a degradation in the markets discriminative power. A good tradeoff between discriminative power and diversity of information is possible according to the model. However, calibration with empirical data characterizing information load and finite attention in real social media reveals a weak correlation between quality and popularity of information. In these realistic conditions, the model predicts that high-quality information has little advantage over low-quality information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا