ترغب بنشر مسار تعليمي؟ اضغط هنا

Flat bands, electron interactions and magnetic order in magic-angle mono-trilayer graphene

114   0   0.0 ( 0 )
 نشر من قبل Zachary Goodwin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting with twisted bilayer graphene, graphene-based moire materials have recently been established as a new platform for studying strong electron correlations. In this paper, we study twisted graphene monolayers on trilayer graphene and demonstrate that this system can host flat bands when the twist angle is close to the magic-angle of 1.16$^circ$. When monolayer graphene is twisted on ABA trilayer graphene, the flat bands are not isolated, but are intersected by a Dirac cone with a large Fermi velocity. In contrast, graphene twisted on ABC trilayer graphene (denoted AtABC) exhibits a gap between flat and remote bands. Since ABC trilayer graphene and twisted bilayer graphene are known to host broken-symmetry phases, we further investigate the ostensibly similar magic angle AtABC system. We study the effect of electron-electron interactions in AtABC using both Hartree theory and an atomic Hubbard theory to calculate the magnetic phase diagram as a function of doping, twist angle, and perpendicular electric field. Our analysis reveals a rich variety of magnetic orderings, including ferromagnetism and ferrimagnetism, and demonstrates that a perpendicular electric field makes AtABC more susceptible to magnetic ordering.

قيم البحث

اقرأ أيضاً

The interplay between interlayer van der Waals interaction and intralayer lattice distortion can lead to structural reconstruction in slightly twisted bilayer graphene (TBG) with the twist angle being smaller than a characteristic angle {theta}c. Exp erimentally, the {theta}c is demonstrated to be very close to the magic angle ({theta} ~ 1.05{deg}). In this work, we address the transition between reconstructed and unreconstructed structures of the TBG across the magic angle by using scanning tunnelling microscopy (STM). Our experiment demonstrates that both the two structures are stable in the TBG around the magic angle. By applying a STM tip pulse, we show that the two structures can be switched to each other and the bandwidth of the flat bands, which plays a vital role in the emergent strongly correlated states in the magic-angle TBG, can be tuned. The observed tunable lattice reconstruction and bandwidth of the flat bands provide an extra control knob to manipulate the exotic electronic states of the TBG near the magic angle.
Recent experimental and theoretical investigations demonstrate that twisted trilayer graphene (tTLG) is a highly tunable platform to study the correlated insulating states, ferromagnetism, and superconducting properties. Here we explore the possibili ty of tuning electronic correlations of the tTLG via a vertical pressure. A full tight-binding model is used to accurately describe the pressure-dependent interlayer interactions. Our results show that pressure can push a relatively larger twist angle (for instance, $1.89^{circ}$) tTLG to reach the flat-band regime. Next, we obtain the relationship between the pressure-induced magic angle value and the critical pressure. These critical pressure values are almost half of that needed in the case of twisted bilayer graphene. Then, plasmonic properties are further investigated in the flat band tTLG with both zero-pressure magic angle and pressure-induced magic angle. Two plasmonic modes are detected in these two kinds of flat band samples. By comparison, one is a high energy damping-free plasmon mode that shows similar behavior, and the other is a low energy plasmon mode (flat-band plasmon) that shows obvious differences. The flat-band plasmon is contributed by both interband and intraband transitions of flat bands, and its divergence is due to the various shape of the flat bands in tTLG with zero-pressure and pressure-induced magic angles. This may provide an efficient way of tuning between regimes with strong and weak electronic interactions in one sample and overcoming the technical requirement of precise control of the twist angle in the study of correlated physics.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp haapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Magic-angle twisted trilayer graphene (MATTG) recently emerged as a highly tunable platform for studying correlated phases of matter, such as correlated insulators and superconductivity. Superconductivity occurs in a range of doping levels that is bo unded by van Hove singularities which stimulates the debate of the origin and nature of superconductivity in this material. In this work, we discuss the role of spin-fluctuations arising from atomic-scale correlations in MATTG for the superconducting state. We show that in a phase diagram as function of doping ($ u$) and temperature, nematic superconducting regions are surrounded by ferromagnetic states and that a superconducting dome with $T_c approx 2,mathrm{K}$ appears between the integer fillings $ u =-2$ and $ u = -3$. Applying a perpendicular electric field enhances superconductivity on the electron-doped side which we relate to changes in the spin-fluctuation spectrum. We show that the nematic unconventional superconductivity leads to pronounced signatures in the local density of states detectable by scanning tunneling spectroscopy measurements.
It has recently been shown that superconductivity in magic-angle twisted trilayer graphene survives to in-plane magnetic fields that are well in excess of the Pauli limit, and much stronger than the in-plane critical magnetic fields of magic-angle tw isted bilayer graphene. The difference is surprising because twisted bilayers and trilayers both support the magic-angle flat bands thought to be the fountainhead of twisted graphene superconductivity. We show here that the difference in critical magnetic fields can be traced to a $mathcal{C}_2 mathcal{M}_{h}$ symmetry in trilayers that survives in-plane magnetic fields, and also relative displacements between top and bottom layers that are not under experimental control at present. An gate electric field breaks the $mathcal{C}_2 mathcal{M}_{h}$ symmetry and therefore limits the in-plane critical magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا