ﻻ يوجد ملخص باللغة العربية
Recent advances in photonic integrated circuits (PICs) have enabled a new generation of programmable many-mode interferometers (PMMIs) realized by cascaded Mach Zehnder Interferometers (MZIs) capable of universal linear-optical transformations on N input-output optical modes. PMMIs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, PMMI implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here, we introduce a large-scale PMMI platform, based on a 200 mm CMOS process, that uses aluminum nitride (AlN) piezo-optomechanical actuators coupled to silicon nitride (SiN) waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible to near-infrared wavelengths. Moreover, the vanishingly low holding-power consumption of the piezo-actuators enables these PICs to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.
Coherent light sources in silicon photonics are the long-sought holy grail because silicon-based materials have indirect bandgap. Traditional strategies for realizing such sources, e.g., heterogeneous photonic integration, strain engineering and nonl
Aluminium based platforms have allowed to reach major milestones for superconducting quantum circuits. For the next generation of devices, materials that are able to maintain low microwave losses while providing new functionalities, such as large kin
Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs are
We report an all-optical radio-frequency (RF) spectrum analyzer with a bandwidth greater than 5 terahertz (THz), based on a 50-cm long spiral waveguide in a CMOS-compatible high-index doped silica platform. By carefully mapping out the dispersion pro
Guided-wave plasmonic circuits are promising platforms for sensing, interconnection, and quantum applications in the sub-diffraction regime. Nonetheless, the loss-confinement trade-off remains a collective bottleneck for plasmonic-enhanced optical pr