ترغب بنشر مسار تعليمي؟ اضغط هنا

Active deployable primary mirrors on CubeSat

79   0   0.0 ( 0 )
 نشر من قبل Noah Schwartz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The volume available on small satellites restricts the size of optical apertures to a few centimetres, limiting the Ground-Sampling Distance (GSD) in the visible to typically 3 m at 500 km. We present in this paper the latest development of a laboratory demonstrator of a segmented deployable telescope that will triple the achievable ground resolution and improve photometric capability of CubeSat imagers. Each mirror segment is folded for launch and unfolds in space. We demonstrate through laboratory validation very high deployment repeatability of the mirrors <{pm}5 {mu}m. To enable diffraction-limited imaging, segments are controlled in piston, tip, and tilt. This is achieved by an initial coarse alignment of the mirrors followed by a fine phasing step. Finally, we investigate the impact of the thermal environment on high-order wavefront error and the conceptual design of a deployable secondary fitting inside 1U.

قيم البحث

اقرأ أيضاً

In this paper we present HighRes: a laboratory demonstration of a 3U CubeSat with a deployable primary mirror that has the potential of achieving high-resolution imaging for Earth Observation. The system is based on a Cassegrain telescope with a segm ented primary mirror composed of 4 petals that form an effective aperture of 300 mm. The design provides diffraction limited performance over the entire field-of-view and allows for a panchromatic ground-sampling distance of less than 1 m at an altitude of 350 km. The alignment and co-phasing of the mirror segments is performed by focal plane sharpening and is validated through rigorous numerical simulations. The opto-mechanical design of the prototype and its laboratory demonstration are described and measurements from the on-board metrology sensors are presented. This data verifies that the performance of the mirror deployment and manipulation systems is sufficient for co-phasing. In addition, it is shown that the mirrors can be driven to any target position with an accuracy of 25 nm using closed-loop feedback between the mirror motors and the on-board metrology.
Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 {mu}m sag with an optical quality better than {lambda}/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.
We investigate the aspherization of an active mirror for correcting third and fifth-order aberrations. We use a stainless steel AISI 420 mirror with a controlled pressure load, two series of 12-punctual radial positions of force application distribut ed symmetrically in two concentric rings around the mirror. We obtain the wavefronts for Cv1, Sph3, Coma3, Astm3, Comatri, Astm5 aswell as those of the added wavefronts. Although this active prototype mirror has general uses, our goal is to compensate the aberrations of a liquid mirror observing at large angles from the zenith.
Application of cubesats in astronomical observations has been getting more and more mature in recent years. Here we report a concept study of a small Compton polarimeter to fly on a cubesat for observing polarization of soft gamma-rays from a black-h ole X-ray binary, Cygnus X-1. Polarization states provide very useful diagnostics on the emission mechanism and the origin of those gamma rays. In our study, we conducted Monte Carlo simulations to decide the basic design of this small polarimeter. Silicon detectors and cerium bromide scintillators were employed in this study. We estimated its on-axis Compton efficiency at different energies and its data telemetry requirement when flying in a low earth orbit. Our results indicate that it is feasible to achieve high signal-to-noise ratio for observing Cyg X-1 with such a small instrument. Based on this study, we will proceed to have a more realistic design and look for opportunities of a cubesat space mission.
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emi ssion of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we will illustrate the HERMES payload design, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive X-ray and gamma-ray detector to be accommodated in a CubeSat 1U volume together with its complete control electronics and data handling system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا