ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting steady emission and Very High Energy flaring states in blazars: the case of Mrk 421

125   0   0.0 ( 0 )
 نشر من قبل Anton Dmytriiev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various attempts have been made in the literature at describing the origin and the physical mechanisms behind flaring events in blazars with radiative emission models, but detailed properties of multi-wavelength (MWL) light curves still remain difficult to reproduce. We have developed a versatile radiative code, based on a time-dependent treatment of particle acceleration, escape and radiative cooling, allowing us to test different scenarios to connect the continuous low-state emission self-consistently with that during flaring states. We consider flares as weak perturbations of the quiescent state and apply this description to the February 2010 MWL flare of Mrk 421, the brightest Very High Energy (VHE) flare ever detected from this archetypal blazar, focusing on interpretations with a minimum number of free parameters. A general criterion is obtained, which disfavours a one-zone model connecting low and high state under our assumptions. A two-zone model combining physically connected acceleration and emission regions yields a satisfactory interpretation of the available time-dependent MWL light curves and spectra of Mrk 421, although certain details remain difficult to reproduce. The two-zone scenario finally proposed for the complex quiescent and flaring VHE emitting region involves both Fermi-I and Fermi-II acceleration mechanisms, respectively at the origin of the quiescent and flaring emission.



قيم البحث

اقرأ أيضاً

A flare from the TeV blazar Mrk 421, occurring in March 2010, was observed for 13 consecutive days from radio to very high energy (VHE, E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, FermiLAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We model the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigate the physical parameters, and evaluate whether the observed broadband SED variability can be associated to variations in the relativistic particle population. Flux variability was remarkable in the X-ray and VHE bands while it was minor or not significant in the other bands. The one-zone SSC model can describe reasonably well the SED of each day for the 13 consecutive days. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission while the other smaller zone, which is spatially separated from the first one, contributes to the daily-variable emission occurring in X-rays and VHE gamma-rays. Both the one-zone SSC and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly to the underlying particle population. This shows that the particle acceleration and cooling mechanism producing the radiating particles could be the main one responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement to the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by the variation of the parameters related to the emitting region itself ($delta$, $B$ and $R$), in addition to the parameters related to the particle population.
ANTARES is the largest high-energy neutrino telescope in the Northern Hemisphere. This contribution presents the results of a search, based on the ANTARES data collected over 17 months between November 2014 and April 2016, for high energy neutrino em ission in coincidence with TeV $gamma$-ray flares from Markarian 421 and Markarian 501, two bright BL Lac extragalactic sources highly variable in flux, detected by the HAWC observatory. The analysis is based on an unbinned likelihood-ratio maximization method. The $gamma$-ray lightcurves (LC) for each source were used to search for temporally correlated neutrinos, that would be produced in pp or p-$gamma$ interactions. The impact of different flare selection criteria on the discovery neutrino flux is discussed. Plausible neutrino spectra derived from the observed $gamma$-ray spectra in addition to generic spectra $E^{-2}$ and $E^{-2.5}$ are tested.
207 - M. Orienti 2015
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-gamma-ray properties of high redshift blazars represent a powerful tool for the study of both the energetics of such extreme objects and the Extragalactic Background Light. We present results of a multi-band campaign on TXS 0536+145, which is the highest redshift flaring gamma-ray blazar detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6x10^49 erg/s, which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations are then compared with those shown by the high redshift population. In addition preliminary results from the high redshift flaring blazar PKS 2149-306 will be discussed.
We report the results of photometric observations of the blazars Mrk 421 and 3C 454.3 designed to search for intraday variability (IDV) and short-term variability (STV). Optical photometric observations were spread over eighteen nights for Mrk 421 an d seven nights for 3C 454.3 during our observing run in 2009-2010 at the 1.04 m telescope at ARIES, India. Genuine IDV is found for the source 3C 454.3 but not for Mrk 421. Genuine STV is found for both sources. Mrk 421 was revealed by the MAXI X-ray detector on the International Space Station to be in an exceptionally high flux state in 2010 January - February. We performed a correlation between the X-ray and optical bands to search for time delays and found a weak correlation with higher frequencies leading the lower frequencies by about ten days. The blazar 3C 454.3 was found to be in high flux state in November-December 2009. We performed correlations in optical observations made at three telescopes, along with X-ray data from the MAXI satellite and public release gamma-ray data from the Fermi space telescope. We found strong correlations between the gamma-ray and optical bands at a time lag of about four days but the X-ray flux is not correlated with either. We briefly discuss the possible reasons for the time delays between these bands within the framework of existing models for X-ray and gamma-ray emission mechanisms.
202 - A. Tramacere 2009
We present results from a deep spectral analysis of all the Swift observations of Mrk 421 from April 2006 to July 2006, when it reached its largest X-ray flux recorded until 2006. The peak flux was about 85 milli-Crab in the 2.0-10.0 keV band, with t he peak energy (Ep) of the spectral energy distribution (SED) laying often at energies larger than 10 keV. We performed spectral analysis of the Swift observations investigating the trends of the spectral parameters in terms of acceleration and energetic features phenomenologically linked to the SSC model parameters, predicting their effects in the gamma-ray band, in particular the spectral shape expected in the Fermi Gamma-ray Space Telescope-LAT band. We confirm that the X-ray spectrum is well described by a log-parabolic distribution close to Ep, with the peak flux of the SED (Sp) being correlated with Ep, and Ep anti-correlated with the curvature parameter (b). During the most energetic flares the UV-to-soft-X-ray spectral shape requires an electron distribution spectral index s about 2.3. Present analysis shows that the UV-to-X-ray emission from Mrk 421 is likely to be originated by a population of electrons that is actually curved, with a low energy power-law tail. The observed spectral curvature is consistent both with stochastic acceleration or energy dependent acceleration probability mechanisms, whereas the power-law slope form XRT-UVOT data is very close to that inferred from the GRBs X-ray afterglow and in agreement with the universal first-order relativistic shock acceleration models. This scenario hints that the magnetic turbulence may play a twofold role: spatial diffusion relevant to the first order process and momentum diffusion relevant to the second order process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا