ترغب بنشر مسار تعليمي؟ اضغط هنا

The remnant and origin of the historical supernova 1181AD

114   0   0.0 ( 0 )
 نشر من قبل Quentin Andrew Parker
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The guest star of AD 1181 is the only historical supernova of the last millennium that is without a definite counterpart. The previously proposed association with supernova remnant 3C58 is in strong doubt because of the inferred age of this remnant. Here we report a new identification of SN 1181 with our codiscovery of the hottest known Wolf Rayet star of the Oxygen sequence (dubbed Parkers star) and its surrounding nebula Pa 30. Our spectroscopy of the nebula shows a fast shock with extreme velocities of approx. 1,100kms. The derived expansion age of the nebula implies an explosive event approx 1,000 years ago which agrees with the 1181 AD event. The on sky location also fits the historical Chinese and Japanese reports of SN 1181 to 3.5degrees. Pa 30 and Parkers star have previously been proposed to be the result of a double-degenerate merger, leading to a rare Type Iax supernova. The likely historical magnitude and the distance suggest the event was subluminous for normal supernova. This agrees with the proposed Type Iax association which would also be the first of its kind in the Galaxy. Taken together, the age, location, event magnitude and duration elevate Pa 30 to prime position as the counterpart of SN 1181. This source is the only Type Iax supernova where detailed studies of the remnant star and nebula are possible. It provides strong observational support for the double degenerate merger scenario for Type Iax supernovae.



قيم البحث

اقرأ أيضاً

120 - Yousaf Butt 2010
The origin of Galactic cosmic-ray ions has remained an enigma for almost a century. Although it has generally been thought that they are accelerated in the shock waves associated with powerful supernova explosions-for which there have been recent cla ims of evidence-the mystery is far from resolved. In fact, we may be on the wrong track altogether in looking for isolated regions of cosmic-ray acceleration.
176 - Laura A. Lopez 2013
Recent observations have shown several supernova remnants (SNRs) have overionized plasmas, those where ions are stripped of more electrons than they would be if in equilibrium with the electron temperature. Rapid electron cooling is necessary to prod uce this situation, yet the physical origin of that cooling remains uncertain. To assess the cooling scenario responsible for overionization, in this paper, we identify and map the overionized plasma in the Galactic SNR W49B based on a 220 ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation. We performed a spatially-resolved spectroscopic analysis, measuring the electron temperature by modeling the continuum and comparing it to the temperature given by the flux ratio of the He-like and H-like lines of sulfur and of argon. Using these results, we find that W49B is overionized in the west, with a gradient of increasing overionization from east to west. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma.
Overionized recombining plasmas (RPs) have been discovered from a dozen of mixed- morphology (MM) supernova remnants (SNRs). However their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understand the physical origin of RPs. We report on a spatially resolved X-ray spectroscopy of W28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are well reproduced by a combination of two-RP model with different temperatures and ionization states, whereas that in northeastern rim is explained with a single-RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the north- eastern rim also shows an excess emission of the Fe I K{alpha} line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic-ray particles accelerated in W28.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
{it Chandra} X-ray observations of Keplers supernova remnant indicate the existence of a high speed Fe-rich ejecta structure in the southwestern region. We report strong K-shell emission from Fe-peak elements (Cr, Mn, Fe, Ni), as well as Ca, in this Fe-rich structure, implying that those elements could be produced in the inner area of the exploding white dwarf. We found Ca/Fe, Cr/Fe, Mn/Fe and Ni/Fe mass ratios of 1.0--4.1%, 1.0--4.6%, 1--11% and 2--30%, respectively. In order to constrain the burning regime that could produce this structure, we compared these observed mass ratios with those in 18 one-dimensional Type Ia nucleosynthesis models (including both near-$M_{rm Ch}$ and sub-$M_{rm Ch}$ explosion models). The observed mass ratios agree well with those around the middle layer of incomplete Si-burning in Type Ia nucleosynthesis models with a peak temperature of $sim$(5.0--5.3)$times$10$^{9}$ K and a high metallicity, Z $>$ 0.0225. Based on our results, we infer the necessity for some mechanism to produce protruding Fe-rich clumps dominated by incomplete Si-burning products during the explosion. We also discuss the future perspectives of X-ray observations of Fe-rich structures in other Type Ia supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا