ﻻ يوجد ملخص باللغة العربية
We present single-mode nanowire (NW) lasers with ultralow threshold in the near-infrared spectral range. To ensure the single-mode operation, the NW diameter and length are reduced specifically to minimize the longitudinal and transverse modes of the NW cavity. Increased optical losses and reduced gain volume by the dimension reduction are compensated by excellent NW morphology and InGaAs/GaAs multi-quantum disks. At 5 K, a threshold low as 1.6 {mu}J/cm2 per pulse is achieved with a resulting quality factor exceeding 6400. By further passivating the NW with an AlGaAs shell to suppress surface non-radiative recombination, single-mode lasing operation is obtained with a threshold of only 48 {mu}J/cm2 per pulse at room temperature with a high characteristic temperature of 223 K and power output of ~ 0.9 {mu}W. These single-mode, ultralow threshold, high power output NW lasers are promising for the development of near-infrared nanoscale coherent light sources for integrated photonic circuits, sensing, and spectroscopy.
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limi
Nonlinear photonics based on integrated circuits has enabled applications such as parametric amplifiers, soliton frequency combs, supercontinua, and non-reciprocal devices. Ultralow optical loss and the capability for dispersion engineering are essen
High performance of InP-based quantum cascade lasers emitting at $lambda$ ~ 9$mu$m are reported. Thick electroplated gold layer was deposited on top of the laser to improve heat dissipation. With one facet high reflection coated, the devices produce
Microcavity lasers based on erbium-doped lithium niobate on insulator (LNOI), which are key devices for LNOI integrated photonics, have attracted much attention recently. In this Letter, we report the realization of a C-band single-mode laser using V
Superconducting nanowire single-photon detectors promise efficient (~100%) and fast (~Gcps) detection of light at the single-photon level. They constitute one of the building blocks to realize integrated quantum optical circuits in a waveguide archit