ﻻ يوجد ملخص باللغة العربية
Previous studies show effective of pre-trained language models for sentiment analysis. However, most of these studies ignore the importance of sentimental information for pre-trained models.Therefore, we fully investigate the sentimental information for pre-trained models and enhance pre-trained language models with semantic graphs for sentiment analysis.In particular, we introduce Semantic Graphs based Pre-training(SGPT) using semantic graphs to obtain synonym knowledge for aspect-sentiment pairs and similar aspect/sentiment terms.We then optimize the pre-trained language model with the semantic graphs.Empirical studies on several downstream tasks show that proposed model outperforms strong pre-trained baselines. The results also show the effectiveness of proposed semantic graphs for pre-trained model.
This paper analyzes the pre-trained hidden representations learned from reviews on BERT for tasks in aspect-based sentiment analysis (ABSA). Our work is motivated by the recent progress in BERT-based language models for ABSA. However, it is not clear
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take
Aspect-based sentiment analysis (ABSA) aims to predict fine-grained sentiments of comments with respect to given aspect terms or categories. In previous ABSA methods, the importance of aspect has been realized and verified. Most existing LSTM-based m
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works
Aspect-based sentiment analysis (ABSA) aims at analyzing the sentiment of a given aspect in a sentence. Recently, neural network-based methods have achieved promising results in existing ABSA datasets. However, these datasets tend to degenerate to se