ﻻ يوجد ملخص باللغة العربية
The Standing Wave (SW) TESLA niobium-based superconducting radio frequency structure is limited to an accelerating gradient of about 50 MV/m by the critical RF magnetic field. To break through this barrier, we explore the option of niobium-based traveling wave (TW) structures. Optimization of TW structures was done considering experimentally known limiting electric and magnetic fields. It is shown that a TW structure can have an accelerating gradient above 70 MeV/m that is about 1.5 times higher than contemporary standing wave structures with the same critical magnetic field. The other benefit of TW structures shown is R/Q about 2 times higher than TESLA structure that reduces the dynamic heat load by a factor of 2. A method is proposed how to make TW structures multipactor-free. Some design proposals are offered to facilitate fabrication. Further increase of the real-estate gradient (equivalent to 80 MV/m active gradient) is also possible by increasing the length of the accelerating structure because of higher group velocity and cell-to-cell coupling. Realization of this work opens paths to ILC energy upgrades beyond 1 TeV to 3 TeV in competition with CLIC. The paper will discuss corresponding opportunities and challenges.
A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cu
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using N
A high-resolution, intratrain position feedback system has been developed to achieve and maintain collisions at the proposed future electron-positron International Linear Collider (ILC). A prototype has been commissioned and tested with a beam in the
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using N
As a result of a collaboration between Jefferson Lab and niobium manufacturer CBMM, ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large grain high puri