ﻻ يوجد ملخص باللغة العربية
We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.
We investigate the effect of the mass anisotropy on Friedel Oscillations, Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, screening properties, and Boltzmann transport in two dimensional (2D) metallic and doped semiconductor systems. We calculate t
Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional static electric field. Here we show that a corresponding dynamics can occur upon replacing the spatially periodic potential by a time-perio
For atomic thin layer insulating materials we provide an exact analytic form of the two-dimensional screened potential. In contrast to three-dimensional systems where the macroscopic screening can be described by a static dielectric constant in 2D sy
We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized microwave radiation in presence of dilute localized impurities. Inspired by recent developments on Floquet topological insulators we obtain the Floquet wave
Experiments observe an enhanced superconducting gap over impurities as compared to the clean-bulk value. In order to shed more light on this phenomenon, we perform simulations within the framework of Bogoliubov-deGennes theory applied to the attracti