ﻻ يوجد ملخص باللغة العربية
Radio-frequency (14.6 MHz) AC magnetic susceptibility, $chi^{prime}_{AC}$, of dytio was measured using a self-oscillating tunnel-diode resonator. Measurements were made with the excitation AC field parallel to the superimposed DC magnetic field up 5 T in a wide temperature range from 50 mK to 100 K. At 14.6 MHz a known broad peak of $chi^{prime}_{AC}(T)$ from kHz - range audio-frequency measurements around 15~K for both [111] and [110] directions shifts to 45~K, continuing the Arrhenius activated behavior with the same activation energy barrier of $E_a approx 230$~K. Magnetic field dependence of $chi^{prime}_{AC}$ along [111] reproduces previously reported low-temperature two-in-two-out to three-in-one-out spin configuration transition at about 1~T, and an intermediate phase between 1 and 1.5~T. The boundaries of the intermediate phase show reasonable overlap with the literature data and connect at a critical endpoint of the first-order transition line, suggesting that these low-temperature features are frequency independent. An unusual upturn of magnetic susceptibility at $T to 0$ was observed in magnetic fields between 1.5~T and 2~T for both magnetic field directions, before fully polarized configuration sets in above 2~T.
The elementary excitations of the spin-ice materials Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ in zero field can be described as independent magnetic monopoles. We investigate the influence of these exotic excitations on the heat transport by measuring
The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, hosting many emergent properties, e.g. spin ice and monopole-type excitation. Recently, the magnetic monopole excitation of spin ice systems was predicted t
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy$_2$Ti$_2$O$_7$. Understanding has been hindered by issues including disorder, glass formation, and interpretatio
Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in gen
We have performed nuclear quadrupole resonance (NQR) experiments on $^{47}$Ti nuclei in Dy$_2$Ti$_2$O$_7$ in the temperature range 70 -- 300 K in order to investigate the dynamics of $4f$ electrons with strong Ising anisotropy. A significant change o