ترغب بنشر مسار تعليمي؟ اضغط هنا

How Turbulent is the Magnetically Closed Corona?

40   0   0.0 ( 0 )
 نشر من قبل James Klimchuk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that the magnetically closed corona evolves primarily quasi-statically, punctuated by many localized bursts of activity associated with magnetic reconnection at a myriad of small current sheets. The sheets form by various processes that do not involve a traditional turbulent cascade whereby energy flows losslessly through a continuum of spatial scales starting from the large scale of the photospheric driving. If such an inertial range is a defining characteristic of turbulence, then the magnetically closed corona is not a turbulent system. It nonetheless has a complex structure that bears no direct relationship to the pattern of driving.



قيم البحث

اقرأ أيضاً

Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic recon nection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.
Magnetic reconnection at the interface between coronal holes and loops, so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly var iable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal hole boundary regions, and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.
Given the fact that Earth is so far the only place in the Milky Way galaxy known to harbor life, the question arises of whether the solar system is in any way special. To address this question, I compare the solar system to the many recently discover ed exoplanetary systems. I identify two main features that appear to distinguish the solar system from the majority of other systems: (i) the lack of super-Earths, (ii) the absence of close-in planets. I examine models for the formation of super-Earths, as well as models for the evolution of asteroid belts, the rate of asteroid impacts on Earth, and of snow lines, all of which may have some implications for the emergence and evolution of life on a terrestrial planet. Finally, I revisit an argument by Brandon Carter on the rarity of intelligent civilizations, and I review a few of the criticisms of this argument.
Eruptive activity in the solar corona can often lead to the propagation of shock waves. In the radio domain the primary signature of such shocks are type II radio bursts, observed in dynamic spectra as bands of emission slowly drifting towards lower frequencies over time. These radio bursts can sometimes have inhomogeneous and fragmented fine structure, but the cause of this fine structure is currently unclear. Here we observe a type II radio burst on 2019-March-20th using the New Extension in Nanc{c}ay Upgrading LOFAR (NenuFAR), a radio interferometer observing between 10-85 MHz. We show that the distribution of size-scales of density perturbations associated with the type II fine structure follows a power law with a spectral index in the range of $alpha=-1.7$ to -2.0, which closely matches the value of $-5/3$ expected of fully developed turbulence. We determine this turbulence to be upstream of the shock, in background coronal plasma at a heliocentric distance of $sim$2 R$_{odot}$. The observed inertial size-scales of the turbulent density inhomogeneities range from $sim$62 Mm to $sim$209 km. This shows that type II fine structure and fragmentation can be due to shock propagation through an inhomogeneous and turbulent coronal plasma, and we discuss the implications of this on electron acceleration in the coronal shock.
The space-weather conditions that result from stellar winds significantly impact the habitability of exoplanets. The conditions can be calculated from first principles if the necessary boundary conditions -- namely on the plasma density in the outer corona and the radial distance at which the plasma forces the closed magnetic field into an open geometry -- are specified. Low frequency radio observations ($ u lesssim 200$ MHz) of plasma and cyclotron emission from stars probe these magneto-ionic conditions. Here we report the detection of low-frequency ($120-167,{rm MHz}$) radio emission associated with the dMe6 star WX UMa. If the emission originates in WX UMas corona, we show that the closed field regions extends to at least $approx 10$ stellar radii, that is about a factor of a few larger than the solar value, and possibly to $gtrsim 20$ stellar radii. Our results suggest that the magnetic-field structure of M dwarfs is in between Sun-like and planet-like configurations, where compact over-dense coronal loops with X-ray emitting plasma co-exist with a large-scale magnetosphere with lower plasma density and closed magnetic geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا