ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth and Domain Structure Imaging of Kagome Magnet Fe$_3$Sn$_2$

99   0   0.0 ( 0 )
 نشر من قبل Roland Kawakami
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic materials with kagome crystal structure exhibit rich physics such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here we report the synthesis of high-quality epitaxial films of topological kagome magnet Fe$_3$Sn$_2$ by atomic layer molecular beam epitaxy. Structural and magnetic characterization of Fe$_3$Sn$_2$ on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies of the local magnetic structure by anomalous Nernst effect imaging reveals in-plane oriented micrometer size domains. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe$_3$Sn$_2$ with other materials.

قيم البحث

اقرأ أيضاً

152 - Hang Li , Bei Ding , Jie Chen 2019
We report on the observation of a large topological Hall effect (THE) over a wide temperature region in a geometrically frustrated Fe3Sn2 magnet with a kagome-bilayer structure. We found that the magnitude of the THE resistivity increases with temper ature and reaches -0.875 {mu}{Omega}.cm at 380 K. Moreover, the critical magnetic fields with the change of THE are consistent with the magnetic structure transformation, which indicates that the real-space fictitious magnetic field is proportional to the formation of magnetic skyrmions in Fe3Sn2. The results strongly suggest that the large THE originates from the topological magnetic spin textures and may open up further research opportunities in exploring emergent phenomena in kagome materials.
Magnetic materials with competing magnetocrystalline anisotropy and dipolar energies can develop a wide range of domain patterns, including classical stripe domains, domain branching, as well as topologically trivial and non-trivial (skyrmionic) bubb les. We image the magnetic domain pattern of Fe$_3$Sn$_2$ by magnetic force microscopy (MFM) and study its evolution due to geometric confinement, magnetic fields, and their combination. In Fe$_3$Sn$_2$ lamellae thinner than 3 $mu$m, we observe stripe domains whose size scales with the square root of the lamella thickness, exhibiting classical Kittel scaling. Magnetic fields turn these stripes into a highly disordered bubble lattice, where the bubble size also obeys Kittel scaling. Complementary micromagnetic simulations quantitatively capture the magnetic field and geometry dependence of the magnetic patterns, reveal strong reconstructions of the patterns between the surface and the core of the lamellae, and identify the observed bubbles as skyrmionic bubbles. Our results imply that geometrical confinement together with competing magnetic interactions can provide a path to fine-tune and stabilize different types of topologically trivial and non-trivial spin structures in centrosymmetric magnets.
392 - Junyi Yang , Lin Hao , Qi Cui 2019
5d iridates have shown vast emergent phenomena due to a strong interplay among its lattice, charge and spin degrees of freedom, because of which the potential in spintronic application of the thin-film form is highly leveraged. Here we have epitaxial ly stabilized perovskite SrIr$_{0.8}$Sn$_{0.2}$O$_3$ on [001] SrTiO$_3$ substrates through pulsed laser deposition and systematically characterized the structural, electronic and magnetic properties. Physical properties measurements unravel an insulating ground state with a weak ferromagnetism in the compressively strained epitaxial film. The octahedral rotation pattern is identified by synchrotron x-ray diffraction, resolving a mix of $a^+b^-c^-$ and $a^-b^+c^-$ domains. X-ray magnetic resonant scattering directly demonstrates a G-type antiferromagnetic structure of the magnetic order and the spin canting nature of the weak ferromagnetism.
A large anomalous Hall effect (AHE) has been observed in ferromagnetic $textrm{Fe}_3textrm{Sn}_2$ with breathing kagome bilayers. To understand the underlying mechanism for this, we investigate the electronic structure of $textrm{Fe}_3textrm{Sn}_2$ b y angle-resolved photoemission spectroscopy (ARPES). In particular, we use both vacuum ultraviolet light (VUV) and soft x ray (SX), which allow surface-sensitive and relatively bulk-sensitive measurements, respectively, and distinguish bulk states from surface states, which should be unlikely related to the AHE. While VUV-ARPES observes two-dimensional bands mostly due to surface states, SX-ARPES reveals three-dimensional band dispersions with a periodicity of the rhombohedral unit cell in the bulk. Our data show a good consistency with a theoretical calculation based on density functional theory, suggesting a possibility that $textrm{Fe}_3textrm{Sn}_2$ is a magnetic Weyl semimetal.
We perform detailed muon spin rotation ($mu$SR) measurements in the classic antiferromagnet Fe$_2$O$_3$ and explain the spectra by considering dynamic population and dissociation of charge-neutral muon-polaron complexes. We show that charge-neutral m uon states in Fe$_2$O$_3$, despite lacking the signatures typical of charge-neutral muonium centers in nonmagnetic materials, have a significant impact on the measured $mu$SR frequencies and relaxation rates. Our identification of such polaronic muon centers in Fe$_2$O$_3$ suggests that isolated hydrogen (H) impurities form analogous complexes, and that H interstitials may be a source of charge carrier density in Fe$_2$O$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا