ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended envelopes around Galactic Cepheids. V. Multi-wavelength and time-dependent analysis of IR excess

72   0   0.0 ( 0 )
 نشر من قبل Alexandre Gallenne
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to investigate the IR excess of 45 MW Cepheids combining different observables to constrain the presence of CSE. We used the SPIPS algorithm, a robust implementation of the parallax-of-pulsation method that combines photometry, angular diameter, stellar effective temperature, and RV measurements in a global modelling of the pulsation. We obtained new photometric measurements at mid-IR with the VLT/VISIR complemented with literature data. We then compared the mean magnitude from 0.5$mu$m to 70$mu$m with stellar atmosphere models to infer the IR excess, which we attribute to the presence of a CSE. We report that at least 29% of our sample have a detected IR excess. We estimated a mean excess of 0.08mag in K and 0.13mag in N. Other Cepheids possibly have IR excess, but they were rejected due to their low detection level compared to a single-star model. We do not see any correlation between the IR excess and the pulsation period as previously suspected for MW Cepheids, but a rather constant trend. We also do not find any correlation between the CO absorption and the presence of a CSE, but rather with the stellar effective temperature, which confirms that the CO features previously reported are mostly photospheric. No bias caused by the presence of the CSE is detected on the average distance estimates from a SPIPS analysis with a fitted colour excess. We also do not find correlation between the presence of IR excess and the evolution stage. We report a fraction of 29% of Cepheids with an IR excess likely produced by the CSE. Longer period Cepheids do not exhibit greater excess than short periods as previously suspected from observations and theoretical dusty-wind models. Other mechanisms such as free-free emission, among others, may be at the origin of their formation. We also show that not fitting the colour excess leads to a bias on the distance estimates in our Galaxy.

قيم البحث

اقرأ أيضاً

Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a non-pulsating yellow supergiant (alpha Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of alpha Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with similar characteristics to CSE found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSE, detected by near infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE non-detection around a non-pulsating supergiant in the instability strip, alpha Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.
Despite observational evidences, InfraRed (IR) excess of classical Cepheids are seldom studied and poorly understood, but probably induces systematics on the Period-Luminosity (PL) relation used in the calibration of the extragalactic distance scale. This study aims to understand the physical origin of the IR excess found in the spectral energy distribution (SED) of 5 Cepheids : RS Pup (P=41.46d), zeta Gem (P=10.15d), eta Aql (P=7.18d), V Cen (P=5.49d) and SU Cyg (P=3.85d). A time series of atmospheric models along the pulsation cycle are fitted to a compilation of data, including optical and near-IR photometry, Spitzer spectra (secured at a specific phase), interferometric angular diameters, effective temperature and radial velocity measurements. Herschel images in two bands are also analyzed qualitatively. In this fitting process, based on the SPIPS algorithm, a residual is found in the SED, whatever the pulsation phase, and for wavelengths larger than about $1.2mu$m, which corresponds to the so-determined infrared excess of Cepheids. This IR excess is then corrected from interstellar medium absorption in order to infer or not the presence of dust shells, and is finally used in order to fit a model of a shell of ionized gas. For all Cepheids, we find a continuum IR excess increasing up to about -0.1 magnitudes at 30$mu$m, which cannot be explained by a hot or cold dust model of CircumStellar Environment (CSE). We show, for the first time, that the IR excess of Cepheids can be explained by free-free emission from a thin shell of ionized gas, with a thickness of about 15% of the star radius, a mass of $10^{-9}-10^{-7}$ Msol and a temperature ranging from 3500 to 4500K. This result has to be tested with interferometers operating in visible, in the mid-IR or in the radio domain. The impact of such CSEs of ionized gas on the PL relation of Cepheids needs also more investigations.
A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was al ready known to possess extended infrared emission, while the extended emission around the other two stars S Mus and delta Cep is newly discovered in our observations. Four other stars GH Lup, l Car, T Mon and X Cyg show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass loss rates upper limits for S Mus and delta Cep are in the range from 1e-9 to 1e-8 Msun/yr, with the upper limit for RS Pup as high as 1e-6 Msun/yr. Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula, or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass loss rate we estimate for our sources shows that dusty mass loss can only account for part of the Cepheid mass loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars, and should be taken into account in the calibration of the Cepheid distance scale.
We present a new extended and detailed set of models for Classical Cepheid pulsators at solar chemical composition ($Z=0.02$, $Y=0.28$) based on a well tested nonlinear hydrodynamical approach. In order to model the possible dependence on crucial ass umptions such as the Mass-Luminosity relation of central Helium burning intermediate-mass stars or the efficiency of superadiabatic convection, the model set was computed by varying not only the pulsation mode and the stellar mass but also the Mass-Luminosity relation and the mixing length parameter that is used to close the system of nonlinear hydrodynamical and convective equations. The dependence of the predicted boundaries of the instability strip as well as of both light and radial velocity curves on the assumed Mass-Luminosity and the efficiency of superadiabatic convection is discussed. Nonlinear Period-Mass-Luminosity-Temperature, Period-Radius and Period-Mass-Radius relations are also computed. The theoretical atlas of bolometric light curves for both the fundamental and first overtone mode has been converted in the Gaia filters $G$, $G_{BP}$ and $G_{BR}$ and the corresponding mean magnitudes have been derived. Finally the first theoretical Period-Luminosity-Color and Period-Wesenheit relations in the Gaia filters are provided and the resulting theoretical parallaxes are compared with Gaia Data Release 2 results for both fundamental and first overtone Galactic Cepheids.
Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$textsc{i}$ and CO observations determined that the SNR is interacting with molecula r clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of $gamma$-ray emission coincident with MSH 11-61A, using 70 months of data from the Large Area Telescope on board the textit{Fermi Gamma-ray Space Telescope}. To investigate the origin of this emission, we perform broadband modelling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the $gamma$-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival textit{Suzaku} observation of this remnant. Our investigation shows that the X-ray emission from MSH 11-61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, while the emission towards the east arises from an ionising plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا