ﻻ يوجد ملخص باللغة العربية
The detection of dark matter subhalos without a stellar component in the Galactic halo remains a challenge. We use supervised machine learning to identify high-latitude gamma-ray sources with dark matter-like spectra among unassociated gamma-ray sources in the 4FGL-DR2. Out of 843 4FGL-DR2 unassociated sources at $|b| geq 10mathrm{^circ}$, we select 73 dark matter subhalo candidates. Of the 69 covered by the Neil Gehrels Swift Observatory (Swift), 17 show at least one X-ray source within the 95% LAT error ellipse and 52 where we identify no new sources. This latest inventory of dark subhalos candidates allows us to investigate the possible dark matter substructure responsible for the perturbation in the GD-1 stellar stream. In particular, we examine the possibility that the alleged GD-1 dark subhalo may appear as a 4FGL-DR2 gamma-ray source from dark matter annihilation into Standard Model particles.
The $100^circ$-long thin stellar stream in the Milky Way halo, GD-1, has an ensemble of features that may be due to dynamical interactions. Using high-resolution MMT/Hectochelle spectroscopy we show that a spur of GD-1-like stars outside of the main
Fermi-LAT unidentified sources (unIDs) have proven to be compelling targets for performing indirect dark matter (DM) searches. In a previous work, we found that among the 1235 unIDs in Fermi-LAT catalogs (3FGL, 2FHL and 3FHL) only 44 of those are DM
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a
At a distance of 50 kpc and with a dark matter mass of $sim10^{10}$ M$_{odot}$, the Large Magellanic Cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated mo
New data from the $textit{Gaia}$ satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyze the stellar density perturbations in the GD-1 stream an