ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigorous Signal Reconstruction in Terahertz Emission Spectroscopy

97   0   0.0 ( 0 )
 نشر من قبل Dmitry Turchinovich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Terahertz (THz) emission spectroscopy is a powerful method that allows one to measure the ultrafast dynamics of polarization, current, or magnetization in a material based on THz emission from the material. However, the practical implementation of this method can be challenging, and can result in significant errors in the reconstruction of the quantity of interest. Here, we experimentally and theoretically demonstrate a rigorous method of signal reconstruction in THz emission spectroscopy, and describe the main experimental and theoretical sources of reconstruction error. We identify the linear line-of-sight geometry of the THz emission spectrometer as the optimal configuration for accurate, fully calibrated THz signal reconstruction. As an example, we apply our reconstruction method to ultrafast THz magnetometry experiment, where we recover the ultrafast magnetization dynamics in a photoexcited iron film, including both its temporal shape and absolute magnitude.


قيم البحث

اقرأ أيضاً

The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse.
78 - Peng Suo , Wei Xia , Wenjie Zhang 2019
The van der Waals magnet CrSiTe3 (CST) has captured immense interest because it is capable of retaining the long-range ferromagnetic order even in its monolayer form, thus offering potential use in spintronic devices. Bulk CST crystal has inversion s ymmetry that is broken on the crystal surface. Here, by employing ultrafast terahertz (THz) emission spectroscopy and time resolved THz spectroscopy, the THz emission of the CST crystal was investigated, which shows a strong THz emission from the crystal surface under femtosecond (fs) pulse excitation at 800 nm. Theoretical analysis based on space symmetry of CST suggests the dominant role of shift current occurring on the surface with a thickness of a few quintuple layers in producing the THz emission, in consistence with the experimental observation that the emitted THz amplitude strongly depends on the azimuthal and pumping polarization angles. The present study offers a new efficient THz emitter as well as a better understanding of the nonlinear optical response of CST. It hopefully will open a window toward the investigation on the nonlinear optical response in the mono-/few-layer van der Waals crystals with low-dimensional magnetism.
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscop y using two terahertz quantum cascade laser combs. With just 100 $mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.
Coherent continuous wave (CW) terahertz spectroscopy is an extremely valuable technique that allows for the interrogation of systems that exhibit narrow resonances in the terahertz (THz) frequency range, such as high-quality (high-Q) THz whispering-g allery mode resonators. Unfortunately, common implementations are dramatically impaired by deficiencies in the used data analysis schemes. Here, we show that the physics of the problem presents an elegant solution whose full potential has remained overlooked until now. We argue that, thanks to the causality of physical systems, Hilbert transformation can be used to analyze the frequency response of linear systems with arbitrarily narrow resonance features in coherent CW THz spectroscopy. In particular, by establishing that signals encountered in typical experiments are closely related to analytic signals, we demonstrate that Hilbert transformation is applicable even when the envelope varies rapidly compared to the oscillation period.
In transmission-mode terahertz time-domain spectroscopy (THz-TDS), the thickness of a sample is a critical factor that determines an amount of the interaction between terahertz waves and bulk material. If the interaction length is too small, a change in the transmitted signal is overwhelmed by fluctuations and noise in the system. In this case, the sample can no longer be detected. This article presents a criterion to determine the lower thickness boundary of a free-standing film that can still be detectable by free-space transmission-mode THz-TDS. The rigorous analysis yields a simple proportional relation between the sample optical length and the system SNR. The proposed criterion can help to decide whether an alternative terahertz thin-film sensing modality is necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا