ﻻ يوجد ملخص باللغة العربية
Terahertz (THz) emission spectroscopy is a powerful method that allows one to measure the ultrafast dynamics of polarization, current, or magnetization in a material based on THz emission from the material. However, the practical implementation of this method can be challenging, and can result in significant errors in the reconstruction of the quantity of interest. Here, we experimentally and theoretically demonstrate a rigorous method of signal reconstruction in THz emission spectroscopy, and describe the main experimental and theoretical sources of reconstruction error. We identify the linear line-of-sight geometry of the THz emission spectrometer as the optimal configuration for accurate, fully calibrated THz signal reconstruction. As an example, we apply our reconstruction method to ultrafast THz magnetometry experiment, where we recover the ultrafast magnetization dynamics in a photoexcited iron film, including both its temporal shape and absolute magnitude.
The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e.,
The van der Waals magnet CrSiTe3 (CST) has captured immense interest because it is capable of retaining the long-range ferromagnetic order even in its monolayer form, thus offering potential use in spintronic devices. Bulk CST crystal has inversion s
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscop
Coherent continuous wave (CW) terahertz spectroscopy is an extremely valuable technique that allows for the interrogation of systems that exhibit narrow resonances in the terahertz (THz) frequency range, such as high-quality (high-Q) THz whispering-g
In transmission-mode terahertz time-domain spectroscopy (THz-TDS), the thickness of a sample is a critical factor that determines an amount of the interaction between terahertz waves and bulk material. If the interaction length is too small, a change